

Introduction to Competitive Programming

Ethen Yuen {ethening}

2026-02-14

What is Competitive Programming?

“Competitions where contestants write computer programs to solve a set of well-defined problems within a limited amount of time. The judging is based on correctness and time spent.”

What is Competitive Programming?

“Competitions where contestants **write computer programs** to solve a set of well-defined problems within a limited amount of time. The judging is based on correctness and time spent.”

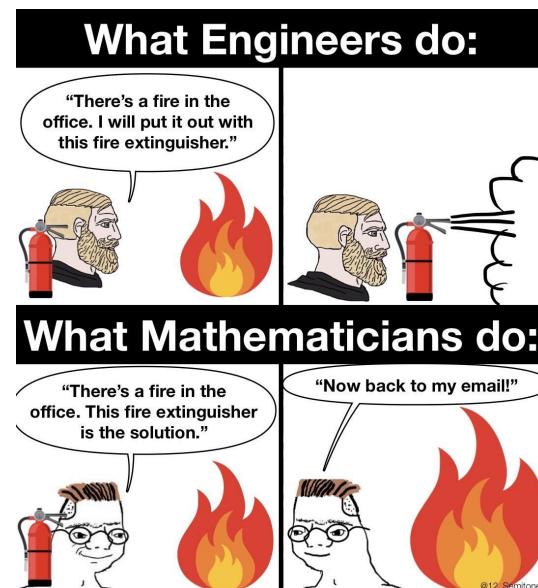
Common misconceptions: Competitive programming is all about **writing code**.

What is Competitive Programming?

“Competitions where contestants write computer programs to **solve a set of well-defined problems** within a limited amount of time. The judging is based on correctness and time spent.”

Actually, competitive programming focuses mainly on **problem solving**, and to represent your solution in a formal way (that is, by writing code).

- In HKOI Training, we will teach you both **1. problem solving** and **2. coding effectively**.


Competitive Programming VS Math Olympiad

“... solve a set of well-defined problems ...”

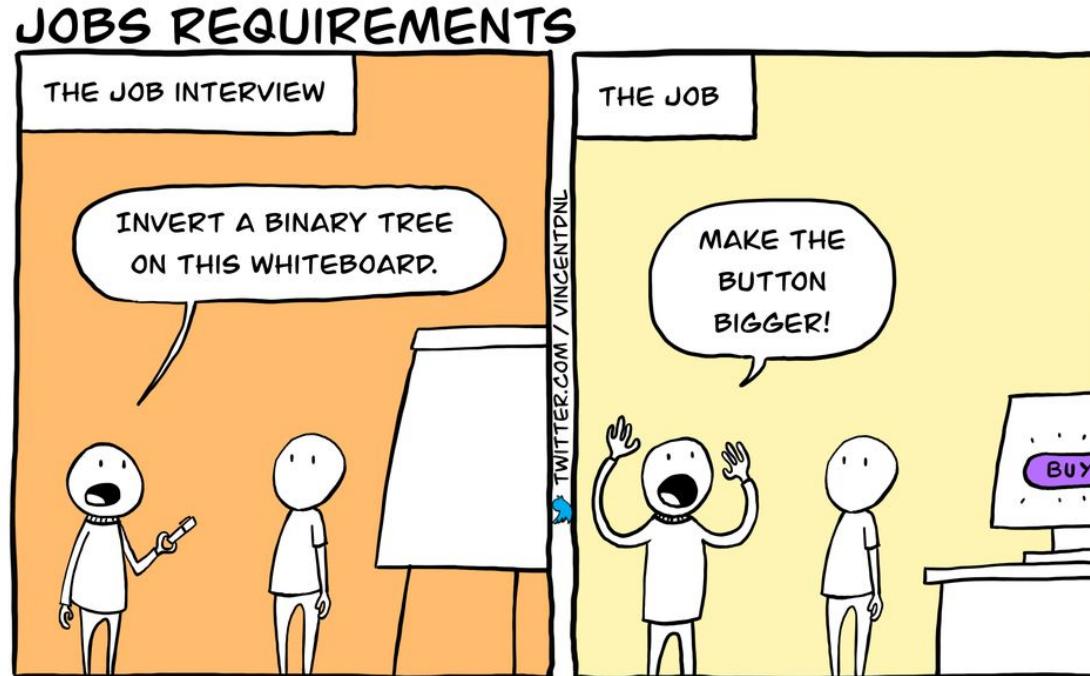
Competitive Programming VS Math Olympiad

While they do share a lot of common problem solving techniques, they care about different parts of the problem generally.

Competitive Programming VS Math Olympiad

Mathematics Olympiad

- Prove the existence of ...
- Prove the characteristics of ...
- Find the greatest k such that ...


Competitive Programming

- Find the number of ... after n days, where $1 \leq n \leq 10^9$. The program should **terminated within 1.00 second**.
- Given input files of 2D points, connect the points using the least number of line segment, scoring is determined by **how many lines you use**.

We also can have solution in competitive programming (*that doesn't make sense in Math Olympiad*) like:

- Let's randomly pick 100 candidates and see if they are the answer, else return impossible

Competitive Programming VS Real-world Programming

https://www.reddit.com/r/ProgrammerHumor/comments/i49h96/jobs_requirements/

Competitive Programming VS Real-world Programming

“solve a set of well-defined problems”

- **Languages**
mostly C++ (because it's fast!)
- **Applications**
not really for real-life use, and you won't have $N=10^5$ friends
- **Knowledge**
data structures, algorithms, maybe some maths, basic coding
- **What we care**
time efficiency (99.99% of the time), space efficiency, ...

“well-defined problems” (?)

- **Languages**
Any (Python, JavaScript, Java, C, C++, Assembly, ...)
- **Applications**
websites, softwares, mobiles apps, robots, OSs, bots, ...
- **Knowledge**
domain-based, e.g. web/app frameworks, game engines, ...
- **What we care**
code maintainability, readability, sometimes efficiency, ...

Why Competitive Programming?

- Strengthen your problem solving / logical thinking skills
- Maybe strengthen your coding skills
- Learn more stuffs related to Computer Science

- **Learn how to be determined and strong to aim for the top**

Why Competitive Programming (Sport Programming)?

- Learn how to be determined and strong to aim for the top
- Similar to sports activity
 - Always trying to be beat your personal best
 - Learn from your peers and compete with them
 - Constantly hold yourself to a high standard
 - Learn to cope with failure
 - Become the **best of the best** to be a HK representative

Why Competitive Programming (Sport Programming)?

Great blog to read: [My winning theory in IOI 2018 & 2019 — Why I won 2 golds in IOI](#)

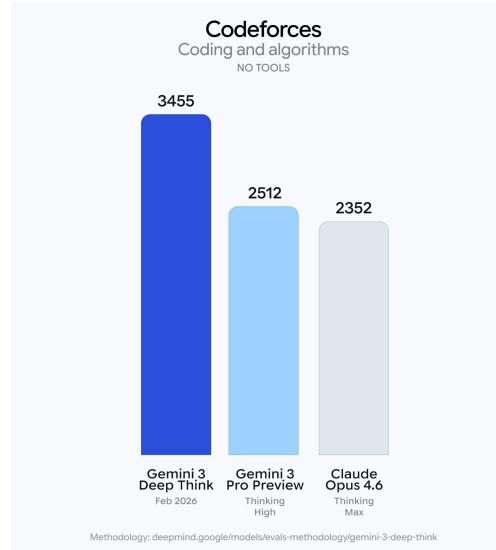
“The competition results will not be determined until the last minutes, the last second, and even the last 0.1 second. The person who never gives up until the last moment will win.”

(The author do 10-hours long virtual contest to prepare for 5-hours IOI and do marathon (*actual running*) to train physical and mental strength.)

3 years ago, <#> [▲](#) | [☆](#)

[▲](#) **+79** [▼](#)

Around 7 hours per day. This is an example of my schedule (weekends) around 2 month before IOI.

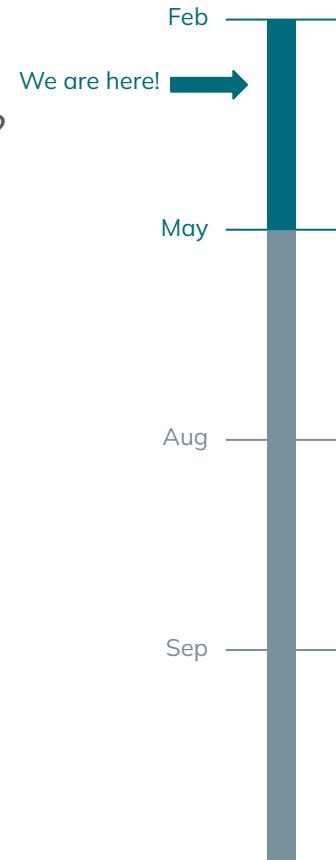

04:45 **Wake up**
05:00 **Breakfast** / warm up (jogging etc.)
06:00 - 11:00 IOI-like **Virtual Day1** (5 hours)
11:10 - 11:40 **Lunch**
11:45 - 12:45 **Review of** IOI-like **Virtual Day1**
13:00 - 18:00 IOI-like **Virtual Day2** (5 hours)
18:00 - 19:00 **Review of** IOI-like **Virtual Day2**
19:00 - 20:00 **Dinner**
20:00 - 22:00 **Codeforces Virtual** (Div.1)
22:15 **Go to bed**

This is an example of contest-based days. There are also some review-based days. In review-based day, I will review some of virtual contest that I did before.

→ [Reply](#)

Why Competitive Programming (Sport Programming)?

- "Is it still worth learning coding and competitive programming?"


- Even putting all the tangible benefits aside. It's still quite fun to challenge yourself intellectually!
- I hope you can find the enjoyment within competitive programming.

Starting from HKOI

What's next after HKOI Final Event?

Trainings & Competitions!

More details on <https://hkoi.org/>.

Regular Training

For HKOI medalists and other interested secondary school students.

Team Formation Test

Result of this test is used to select members for external competitions and other learning activities.

Hong Kong Team Training

By invitation, for members selected for external competitions.

External Competitions

Such as China National Olympiad in Informatics, International Olympiad in Informatics.

Regular Training

Lecture

- Topics on different algorithmic skills (and more)
 - Data Structures
 - Graph Theory
 - Dynamic Programming
 - Maths
 - Ad-hoc Tricks
 - Computer Science related knowledge

Minicomp

- 4 Mini Competitions to get you prepared for the Team Formation Test.

Training Team 2026 Schedule

Important: The following is subject to change. Please visit this page frequently to get the most up-to-date information.

87510	YEUNG-B7510, City University of Hong Kong	G600	Li-G600, City University of Hong Kong
3610	Li-3610, City University of Hong Kong	4307	Li-4307, City University of Hong Kong

Pre-registration required to attend the training sessions. Walk-in is not allowed.

Week Date	AM Session 10:00 - 13:00		PM Session 14:00 - 17:00 For all trainees
	Level A	Level B	
Week 7 2026-02-14	G600 Introduction to HKOI		G600 Solutions to HKOI and HKGOI 2025/26 Final Event
Week 8 2026-02-21	87510 Dynamic Programming (II) Siu Lok Yin	G600 Programming in C++ Wong Cheuk Kiu	G600 Introduction to Linux Chan King Kai
Week 9 2026-02-28	87510 Graph (II) Wai Ka Hei	4307 Optimization and Common Tricks Wong Cheuk Kiu	4307 Constructive Algos, Special Tasks (I) Hsieh Chong Ho
Week 10 2026-03-07	87510 Data Structures (IV) Wong Chun	G600 Data Structures (II) Yuen Lok Kan Ethen	G600 Mini Competition (I)
Week 11 2026-03-14	87510 Graph (IV) Wong Chun	G600 Graph (II) Wong Cheuk Kiu	G600 Constructive Algos, Special Tasks (II) Yuen Lok Kan Ethen
Week 12 2026-03-21	87510 Dynamic Programming (III) Ko Kin Fung Nicholas	G600 Dynamic Programming (I) Chow King Wang	G600 Mini Competition (II)
Week 13 2026-03-28			4307 EGOI Team Formation Test
Week 14 2026-04-04	No Training (BBQ)		
Week 15 2026-04-11	3610 Graph (V) Ko Kin Fung Nicholas	4307 Mathematics in OI (I) Hsieh Chong Ho	4307 Mini Competition (Teams)
Week 16 2026-04-18	3610 Flow and Graph Matching (I) Yuen Lok Kan Ethen	G600 Graph (II) Chow King Wang	G600 Game Theory Wong Chun
Week 17 2026-04-25	3610 Flow and Graph Matching (II) Lu Yi Fung	G600 Data Structures (III) Wong Cheuk Kiu	G600 Mini Competition (III)
Week 18 2026-05-02	TBC Misc Problem Discussion Yuen Lok Kan Ethen, Lu Yi Fung		TBC Mathematics in OI (II) Wong Chun
Week 19 2026-05-09 2026-05-10			TBC APIO / Back-up days for Team Formation Test
Week 20 2026-05-16	No Training		
Week 21 2026-05-23 2026-05-24			TBC Team Formation Test (2 days)

Regular Training

Lecturer Lineup

- **Trainers** who are previously HKOI trainees!
 - Undergraduates, postgrads and software engineers in different fields
 - Ex-HK representatives
 - Still actively competing in contests
- Feel free to ask us any questions about the lectures or tasks or get general tips on competitive programming.

About Us

Executive Committee

Chairperson

Oa Yang Hau Chung, HKACE (Yan Oi Tong Tin Ka Ping Secondary School)

Ex officio member

Technology Education Section, Curriculum Development Institute, Education Bureau, HKSARG

Vice-chairperson

Wong Man Hang

Wong Tsz Chun

Yeung Man Tsung

Yuen Lok Kan Ethen (Head, HKOI Training Team)

Members

Chan King Kai

Chan Pak Hei

Cheng Yu San

Cheung Cheuk Nam

Cheung Hui Yat

Chow King Wang

Hsieh Chong Ho

Ip Tsz Oi

Ko Kin Fung Nicholas

Lu Yi Fung

Siu Lok Yin

Wai Ka Hei

Wang Chi Ho Bosco

Wong Cheuk Kiu

Wong Chun

Wong Ho Yan

Wong Man Lai Angus

Scientific Committee

Tung Kam Chuen (Head)

Chiu Long Hin Vincent

Ho Ngan Hang

Regular Training

Structure

- Topics are classified into 4 progressive levels
- Practice tasks for each level for self-learning and lecture-use.

Level A
Training

Level B
Training

Level C
HKOI

Level D
HKDSE

Regular Training

Structure

- Foundation topics (mostly Level C & D) will be taught in video-lectures format.
 - Recursion, Divide and Conquer Part 1 / HKOI
 - Searching and Sorting Part 1 / HKOI
 - Data Structures (I) Part 1 / HKOI
 - Greedy Algorithms Part 1 / HKOI
 - More to come...
 - For new training team members and non-trainees, you are strongly suggested to learn these topics on your own.

Training Team 2026 Schedule

Important: The following is subject to change. Please visit this page frequently to get the most up-to-date information.

87510	YEUNG-B7510, City University of Hong Kong	G600	Li-G600, City University of Hong Kong
3610	Li-3610, City University of Hong Kong	4307	Li-4307, City University of Hong Kong

Pre-registration required to attend the training sessions. Walk-in is not allowed.

Week Date	AM Session 10:00 - 13:00		PM Session 14:00 - 17:00 For all trainees
	Level A	Level B	
Week 7 2026-02-14	G600 Introduction to HKOI		G600 Solutions to HKOI and HKGOI 2025/26 Final Event
Week 8 2026-02-21	87510 Dynamic Programming (II) Siu Lok Yin	G600 Programming in C++ Wong Cheuk Kiu	G600 Introduction to Linux Chan King Kai
Week 9 2026-02-28	87510 Graph (II) Wai Ka Hei	4307 Optimization and Common Tricks Wong Cheuk Kiu	4307 Constructive Algos, Special Tasks (I) Hsieh Chong Ho
Week 10 2026-03-07	87510 Data Structures (IV) Wong Chun	G600 Data Structures (II) Yuen Lok Kan Ethen	G600 Mini Competition (I)
Week 11 2026-03-14	87510 Graph (IV) Wong Chun	G600 Graph (II) Wong Cheuk Kiu	G600 Constructive Algos, Special Tasks (II) Yuen Lok Kan Ethen
Week 12 2026-03-21	87510 Dynamic Programming (III) Ko Kin Fung Nicholas	G600 Dynamic Programming (I) Chow King Wang	G600 Mini Competition (II)
Week 13 2026-03-28			4307 EGOI Team Formation Test
Week 14 2026-04-04	No Training (BBQ)		
Week 15 2026-04-11	3610 Graph (V) Ko Kin Fung Nicholas	4307 Mathematics in OI (I) Hsieh Chong Ho	4307 Mini Competition (Teams)
Week 16 2026-04-18	3610 Flow and Graph Matching (I) Yuen Lok Kan Ethen	6600 Graph (II) Chow King Wang	G600 Game Theory Wong Chun
Week 17 2026-04-25	3610 Flow and Graph Matching (II) Lu Yi Fung	6600 Data Structures (III) Wong Cheuk Kiu	G600 Mini Competition (III)
Week 18 2026-05-02	TBC Misc Problem Discussion Yuen Lok Kan Ethen, Lu Yi Fung		TBC Mathematics in OI (II) Wong Chun
Week 19 2026-05-09 2026-05-10			TBC APIO / Back-up days for Team Formation Test
Week 20 2026-05-16	No Training		
Week 21 2026-05-23 2026-05-24			TBC Team Formation Test (2 days)

Regular Training

Structure

- AM Session: divided into level A & level B
- **Level B**
 - For first-year training team students
 - Fundamental algorithms
- **Level A**
 - For experienced students
 - Advanced topics
- **Entry Criteria for Level A (any one)**
 - Received HKOI Training Team 2025 Certificate of Attendance
 - Participated in HKOI Training Camp 2025.
 - Received Gold Medal award in HKOI 2025/26.
 - Solved 200 or more tasks on HKOI Online Judge.

Training Team 2026 Schedule

Important: The following is subject to change. Please visit this page frequently to get the most up-to-date information.

87510	YEUNG-B7510, City University of Hong Kong	G600	Li-G600, City University of Hong Kong
3610	Li-3610, City University of Hong Kong	4307	Li-4307, City University of Hong Kong

Pre-registration required to attend the training sessions. Walk-in is not allowed.

Week Date	AM Session 10:00 - 13:00		PM Session 14:00 - 17:00 For all trainees
	Level A	Level B	
Week 7 2026-02-14	G600 Introduction to HKOI		G600 Solutions to HKOI and HKGOI 2025/26 Final Event
Week 8 2026-02-21	87510 Dynamic Programming (II) Siu Lok Yin	G600 Programming in C++ Wong Cheuk Kiu	G600 Introduction to Linux Chan King Kai
Week 9 2026-02-28	87510 Graph (II) Wai Ka Hei	4307 Optimization and Common Tricks Wong Cheuk Kiu	4307 Constructive Algos, Special Tasks (I) Hsieh Chong Ho
Week 10 2026-03-07	87510 Data Structures (IV) Wong Chun	G600 Data Structures (II) Yuen Lok Kan Ethen	G600 Mini Competition (I)
Week 11 2026-03-14	87510 Graph (IV) Wong Chun	G600 Graph (II) Wong Cheuk Kiu	G600 Constructive Algos, Special Tasks (II) Yuen Lok Kan Ethen
Week 12 2026-03-21	87510 Dynamic Programming (III) Ko Kin Fung Nicholas	G600 Dynamic Programming (I) Chow King Wang	G600 Mini Competition (II)
Week 13 2026-03-28			4307 EGOI Team Formation Test
Week 14 2026-04-04	No Training (BBQ)		
Week 15 2026-04-11	3610 Graph (V) Ko Kin Fung Nicholas	4307 Mathematics in OI (I) Hsieh Chong Ho	4307 Mini Competition (Teams)
Week 16 2026-04-18	3610 Flow and Graph Matching (I) Yuen Lok Kan Ethen	6600 Graph (II) Chow King Wang	G600 Game Theory Wong Chun
Week 17 2026-04-25	3610 Flow and Graph Matching (II) Lu Yi Fung	6600 Data Structures (III) Wong Cheuk Kiu	G600 Mini Competition (III)
Week 18 2026-05-02	TBC Misc Problem Discussion Yuen Lok Kan Ethen, Lu Yi Fung		TBC Mathematics in OI (III) Wong Chun
Week 19 2026-05-09 2026-05-10			TBC APIO / Back-up days for Team Formation Test
Week 20 2026-05-16	No Training		
Week 21 2026-05-23 2026-05-24			TBC Team Formation Test (2 days)

Attendance Policy

- No session is compulsory, but we do take attendance.
- Attendance is taken separately for AM and PM sessions.
- You must take attendance if you are present.
- You may be considered absent if you arrive late / leave early.
- Training Team members who attend at least 60% of the sessions (each day of Team Formation Test and APIO each counts as 2 sessions) will receive a certificate.

Online Judge

- >Mainly, we use the [HKOI Online Judge](#) for training purpose.
- Tasks for previous HKOI events, other local events, minicoms, and team formation tests are available.

HKOI Online Judge

Search... Q

- Tasks
- Your Submissions
- Judge Status
- Code
- Contests
- Leaderboard
- Admin

ethening - Ethen Online: 2 04:42:24

Good morning, Ethen!

HKOI Training Team 2023

The first training session "Introduction to HKOI" and "Solutions to HKOI 2022/23 Final Event" will be held on February 4, 2023 (Saturday). To attend the first session, you must register on or before January 31, 2023 (Tuesday).

Please refer to the [general information](#) and [schedule](#) page for more details.

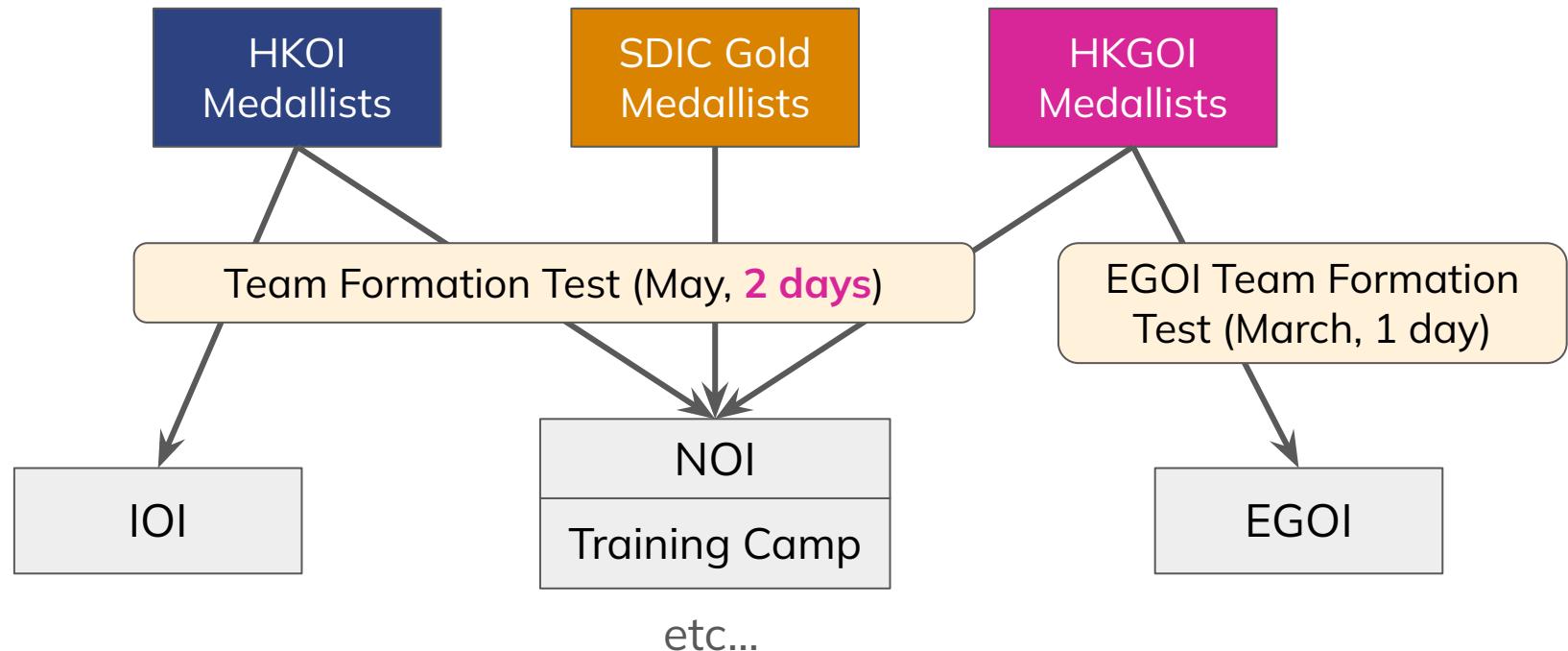
Posted on 2023-01-28 01:00:00

Tasks

AVAILABLE	978
YOU SOLVED	543

All Submissions

COUNT	815760
14 DAYS	2749


Your Submissions

COUNT	2043
14 DAYS	10
LAST	3 d 22 h

Date / Time	User	Task	Language
2023-01-30 01:04:48		D112 - Bitwise operations	C
2023-01-30 01:04:05		D111 - Body Mass Index	C
2023-01-29 23:55:46		D100 - Calculate A+B	Python 3
2023-01-29 23:47:06		D101 - Phone number	Python 3
2023-01-29 22:59:06		D202 - Factors	Python 3
2023-01-29 22:40:34		D106 - Ordinal number	Python 3
2023-01-29 22:27:22		D805 - Merging sub-arrays	C++
2023-01-29 21:53:53		J162 - Time Zones	C++20
2023-01-29 21:44:37		D109 - Giving changes	Python 3
2023-01-29 21:19:21		M223I - Independent Set	C++20

[Terms of Use](#) ·
[Privacy and Data Policy](#)

Team Formation Test

HKOI Training Camp

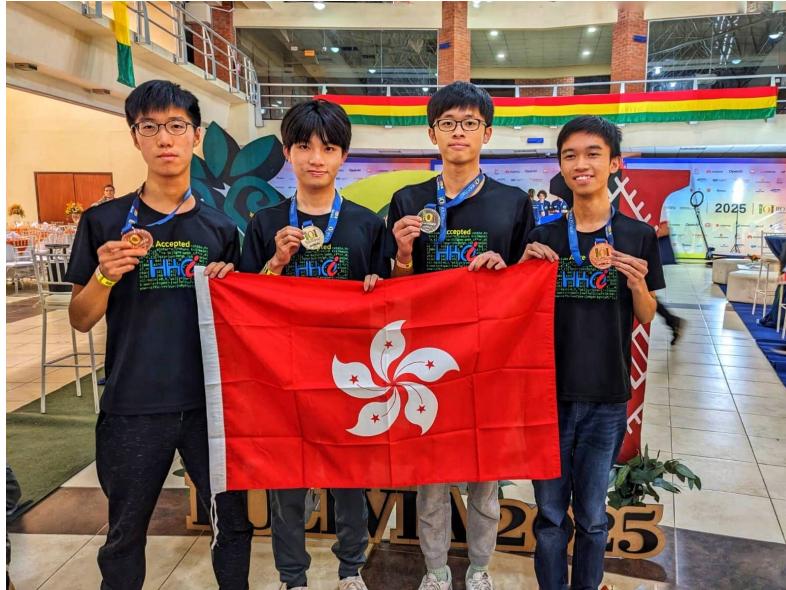
*The camp is mandatory for all HK representatives.

Training Camp 2025

ACM-HK Contest / ICPC Hong Kong Regional Contest

ACM-HK Programming Contest 2025

ICPC Hong Kong Regional Contest 2025


National Olympiad in Informatics

NOI 全国青少年信息学奥林匹克竞赛

NOI 2025, Shaoxing

International Olympiad in Informatics

IOI 2025, Sucre, Bolivia

Other External Competitions

- APIO - Asia Pacific Informatics Olympiad
- IOM - International Olympiad of Metropolises

IOM 2019, Moscow

IOM 2021, Online

What awaits you in front...

IOI 2026, Tashkent, Uzbekistan

What awaits you in front...

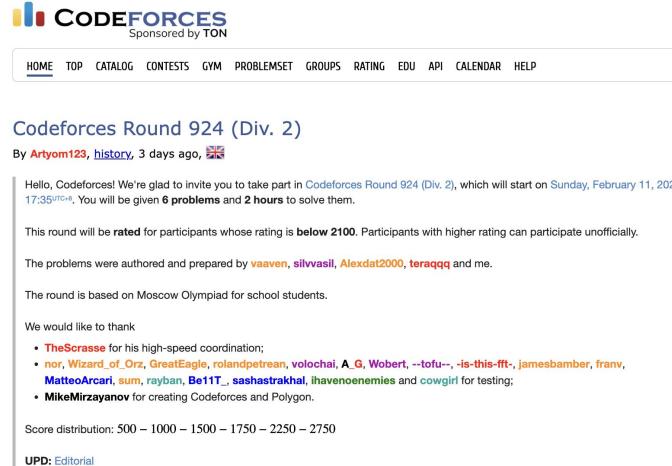
EGOI 2026, Cesenatico, Italy

Important Notice

- Make sure your travel documents have **at least 6 month validity** beyond the date of departure from the Hong Kong.
- The registration deadline of external competitions is usually close to the selection test.
- You **should renew** your Mainland Travel Permit & Passport **now**, regardless of how likely you would become a HK representative.
- We will select the next contestant in the ranking if there are troubles with the documents' validity.

The World of Competitive Programming

ICPC - International Collegiate Programming Contest


- Team-based contest for college students
 - Regional
 - Regional Final
 - World Final
- Each solve earns you 1 balloon

The World of Competitive Programming

Codeforces: <https://codeforces.com/> (recommended)

- Regular contests of different divisions, compete with worldwide top players
- Most recognized Elo rating system (if you heard about someone showing off their “color”)

Codeforces Round 924 (Div. 2)
By Artyom123, [history](#), 3 days ago,

Hello, Codeforces! We're glad to invite you to take part in Codeforces Round 924 (Div. 2), which will start on Sunday, February 11, 2024 at 17:35 (UTC). You will be given 6 problems and 2 hours to solve them.

This round will be rated for participants whose rating is **below 2100**. Participants with higher rating can participate unofficially.

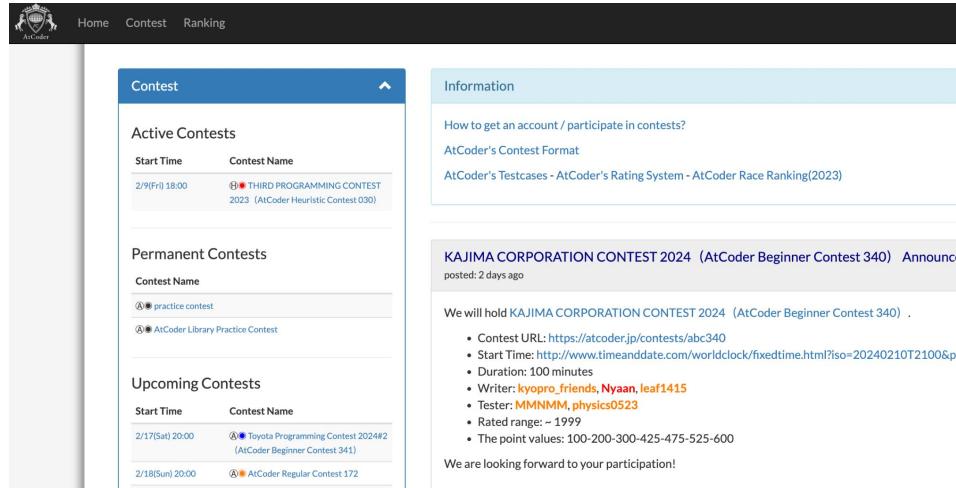
The problems were authored and prepared by [vaaven](#), [silvasaki](#), [Alexdat2000](#), [teraqqq](#) and me.

The round is based on Moscow Olympiad for school students.

We would like to thank

- [TheScrasse](#) for his high-speed coordination;
- [nor](#), [Wizard_of_Orz](#), [GreatEagle](#), [rolandpetrean](#), [volochai](#), [A_G](#), [Wobert](#), [--tofu--](#), [-is-this-fft-](#), [jamesbamber](#), [franv](#), [MatteoArcari](#), [sum](#), [rayban](#), [Be11T_](#), [sashastrakhal](#), [ihavenoenemies](#) and [cowgirl](#) for testing;
- [MikeMirzayanov](#) for creating Codeforces and Polygon.

Score distribution: 500 – 1000 – 1500 – 1750 – 2250 – 2750


UPD: Editorial

Rating range	Title	Division
3000 – 3999+	Legendary Grandmaster	1
2600 – 2999	International Grandmaster	1
2400 – 2599	Grandmaster	1
2300 – 2399	International Master	1
2100 – 2299	Master	1
1900 – 2099	Candidate Master	1/2
1600 – 1899	Expert	2
1400 – 1599	Specialist	2/3
1200 – 1399	Pupil	2/3/4
≤ 1199	Newbie	2/3/4

The World of Competitive Programming

AtCoder: <https://atcoder.jp/> (recommended)

- Japan-based contest site (more observation-based tasks)
- Algorithmic contest & Heuristic contest

The screenshot shows the AtCoder website's Contest page. The top navigation bar includes the AtCoder logo, Home, Contest, and Ranking links. The main content is divided into three sections: Active Contests, Permanent Contests, and Upcoming Contests.

- Active Contests:** Starts 2/9(Fri) 18:00, Contest Name: THIRD PROGRAMMING CONTEST 2023 (AtCoder Heuristic Contest 030).
- Permanent Contests:** Includes practice contest and AtCoder Library Practice Contest.
- Upcoming Contests:** Starts 2/17(Sat) 20:00, Contest Name: Toyota Programming Contest 2024#2 (AtCoder Beginner Contest 341); Starts 2/18(Sun) 20:00, Contest Name: AtCoder Regular Contest 172.

On the right side, there is an Information panel with links to account participation, contest formats, testcases, rating system, and race ranking. A banner at the bottom announces the KAJIMA CORPORATION CONTEST 2024 (AtCoder Beginner Contest 340) with a start time of 2/17(Sat) 20:00.

We are looking forward to your participation!

The World of Competitive Programming

Project Euler: <https://projecteuler.net/about>

- Judge that only accepted numerical answer, more mathy tasks

The screenshot shows the Project Euler website. At the top, there is a navigation bar with links: About, Archives (which is highlighted in orange), Recent, Progress, Account, News, Friends, and Statistics. To the right of the navigation bar, it says "Logged in as" and shows the date "Sun, 11 Feb 2". Below the navigation bar, there is a back arrow icon. The main content area is titled "Multiples of 3 or 5" and is labeled "Problem 1". The problem statement is: "If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000." At the bottom, there is a form with the label "Answer:" followed by an empty input field, and a "Check" button.


The World of Competitive Programming

OI Checklist: <https://oichecklist.pythonanywhere.com/> (strongly recommended)

- Checklist for hard problems from past OIs of different countries

International Olympiad in Informatics

Progress on IOI Problems

IOI 2023	Closing	Longest Trip	Soccer			
IOI 2022	Fish	Prison	Towers	Circuit	Insects	Islands
IOI 2021	Candies	Keys	Parks	DNA	Dungeons	Registers
IOI 2020	Plants	Supertrees	Tickets	Biscuits	Mushrooms	Stations

Common Contest Rules

IOI Style

- 3 to 5 tasks, 100 points each (usually)
- Each task will be divided into subtasks (or cases)
- Rank based on points you get
- Solving speed is less important
- Common in high school contests
 - HKOI Final Event, HK TFT (Team Formation Test)

Rank	First Name	Last Name	Team	cand...	keys	parks	IOI 202...	dna	dun...	regi...	IOI 202...	Global
1	Mingyang	Deng	CHN3	100	100	100	300	100	100	100	300	600
2	Yi	Qian	CHN2	67	100	70	237	100	100	100	300	537
3	Chenxin	Dai	CHN4	100	100	70	270	100	89	46	235	505
4	Haoxiang	Yu	CHN1	100	37	100	237	100	89	71	260	497
5	Rain	Jiang	USA2	100	100	45	245	100	100	34	234	479
6	Ryomei	Sugai	JPN2	100	67	100	267	100	62	46	208	475
7	Ditbul	Ban	KOR1	100	67	70	237	100	62	75	237	474
8	Ashley	Aragorn	SGP1	100	37	100	237	100	89	46	235	472
9	Zixiang	Zhou	CAN3	100	37	100	237	100	100	33	233	470
10	Harris	Leung	HKG2	100	100	70	270	100	0	75	175	445
11	Matej	Harris Leung (HKG)	CZE1	100	37	70	207	100	36	100	236	443
12	Siyong	Huang	USA1	100	37	70	207	100	62	71	233	440
13	Marco	Meijer	NLD1	100	37	55	192	100	100	47	247	439
14	Dorjan	Lendvaj	HRV2	100	0	70	170	100	62	100	262	432
15	Jan	Strzeszynski	POL2	38	100	70	208	100	62	46	208	416
16	Patrick	Pavić	HRV1	100	37	70	207	100	50	58	208	415
17	Timothy	Feng	USA4	100	37	30	167	100	89	58	247	414
18	Ioan	Popescu	ROU4	11	100	70	181	100	100	33	233	414
19	Mikhail	Budnikov	RUS3	67	67	70	204	100	62	46	208	412
20	Egor	Lifar	RUS1	67	67	70	204	100	62	46	208	412
21	Alireza	Keshavarz Hedayati	IRN2	67	100	15	182	100	100	21	221	403
22	Joël	Huber	CHE1	100	37	70	207	100	62	21	183	390
23	Shen	Xing Yang	SGP2	100	37	70	207	100	62	21	183	390
24	Timofei	Fedoseev	RUS2	11	100	70	181	100	50	58	208	389
25	Oleh	Naver	UKR1	67	37	70	174	100	62	46	208	382
26	Jíří	Kalvoda	CZE2	100	37	35	172	100	62	46	208	380
27	Ping-Hsuan	Lin	TWN1	38	37	70	145	100	100	33	233	378
28	Pikatan Arya	Bramajati	IDN2	100	100	55	255	100	11	10	121	376
29	Daiki	Kodama	JPN3	38	37	30	105	100	100	71	271	376
30	Tan	Si Jie	SGP3	67	37	100	204	100	36	33	169	373

IOI 2021 Scoreboard

<https://ranking.ioi2021.sg/>

Common Contest Rules

ICPC Style

- 8 to 12 tasks (usually)
- No subtasks
- Rank based on tasks solved, then by time penalty
- Solving speed is important
- Common in uni contests
 - ICPC, HKOI Team Minicomp

ICPC World Finals 2019 Scoreboard
<https://icpc.global/scoreboard/>

RANK	TEAM	SCORE	A ●	B ○	C ○	D ○	E ○	F ○	G ○	H ○	I ○	J ○	K ○
1	Northern Eurasia Moscow State University	10 1531	42 1 try	142 1 try	56 1 try	40 2 tries	279 4 tries	114 1 try	92 2 tries	245 1 try	72 1 try	249 6 tries	
2	North America Massachusetts Institute of Technology	9 1191	27 1 try	90 1 try	107 1 try	56 1 try	168 1 try	119 2 tries	63 2 tries	278 1 try	278 1 try	243 1 try	
3	Asia Pacific The University of Tokyo	9 1386	40 1 try	204 2 tries	62 1 try	31 1 try	230 4 tries	128 3 tries	57 1 try	157 1 try	297 4 tries	297 4 tries	
4	Europe University of Warsaw	8 891	49 1 try	126 11 tries	32 1 try	14 1 try	55 1 try	32 1 try	111 1 try	111 1 try	292 9 tries	292 9 tries	
5	National Taiwan University	8 1179	27 1 try	165 1 try	38 1 try	142 1 try	130 1 try	208 2 tries	278 1 try	191 1 try	191 1 try	191 1 try	
6	University of Wroclaw	8 1200	29 1 try	277 4 tries	28 1 try	57 1 try	212 2 tries	91 2 tries	263 2 tries	103 2 tries	103 1 try	297 1 try	
7	Seoul National University	7 783	74 1 try	103 4 tries	31 1 try	69 3 tries	146 3 tries	82 1 try	118 1 try	118 4 tries	118 4 tries	118 4 tries	
8	Korea East KimChaek University of Technology	7 803	32 1 try	132 2 tries	78 2 tries	43 1 try	97 1 try	188 1 try	193 1 try	193 1 try	193 1 try	193 1 try	
9	Asia West Sharif University of Technology	7 923	23 1 try	170 2 tries	75 1 try	46 1 try	148 2 tries	133 1 try	288 1 try	288 1 try	288 1 try	288 1 try	
10	Moscow Institute of Physics & Technology	7 954	47 1 try	155 1 try	140 1 try	78 2 tries	145 1 try	113 1 try	236 1 try	236 2 tries	236 2 tries	236 2 tries	
11	National Research University Higher School of Economics	7 990	50 1 try	199 3 tries	76 2 tries	51 2 tries	137 2 tries	104 1 try	273 1 try	273 1 try	273 1 try	273 1 try	
12	The Chinese University of Hong Kong	7 1057	90 1 try	239 4 tries	42 1 try	59 1 try	217 2 tries	127 1 try	203 1 try	203 1 try	203 1 try	203 1 try	
13	Peking University	7 1106	34 1 try	245 1 try	119 2 tries	163 2 tries	143 1 try	114 1 try	228 2 tries	228 2 tries	228 2 tries	228 2 tries	
14	Fudan University	7 1179	24 6 tries	284 6 tries	27 1 try	197 7 tries	152 1 try	131 1 try	124 1 try	124 1 try	124 1 try	124 1 try	
15	Yik Wai Pan (CUHK)	7 1184	21 1 try	185 4 tries	86 2 tries	58 1 try	262 4 tries	159 5 tries	173 2 tries	173 2 tries	173 2 tries	173 2 tries	
16	University of Oxford	7 1185	54 1 try	295 6 tries	30 1 try	85 2 tries	235 3 tries	178 1 try	148 1 try	148 1 try	148 1 try	148 1 try	
17	St. Petersburg ITMO University	7 1296	34 1 try	178 5 tries	105 1 try	160 4 tries	291 4 tries	63 2 tries	245 1 try	245 1 try	245 1 try	245 1 try	
18	University of Cambridge	7 1359	161 3 tries	139 1 try	81 1 try	153 1 try	202 4 tries	242 1 try	261 2 tries	261 2 tries	261 2 tries	261 2 tries	
19	Shanghai Jiao Tong University	7 1427	47 1 try	298 12 tries	97 1 try	42 1 try	257 2 tries	166 3 tries	220 2 tries	220 2 tries	220 2 tries	220 2 tries	
20	Tsinghua University	7 1634	235 5 tries	180 3 tries	95 1 try	150 5 tries	194 2 tries	178 1 try	282 6 tries	282 1 try	282 1 try	282 1 try	
21	Universitat Politècnica de Catalunya	6 636	62 1 try	185 1 try	52 1 try	31 1 try	181 1 try	125 1 try	125 1 try	125 1 try	125 1 try	125 1 try	
22	Belarusian State University	6 773	86 1 try	219 3 tries	27 1 try	46 1 try	129 1 try	186 3 tries					
23	Universitas Indonesia	6 815	115 4 tries	223 6 tries	92 1 try	64 1 try	5 tries 1 try	128 1 try	33 1 try	128 1 try	33 1 try	128 1 try	
24	KAIST	6 869	40 2 tries	290 7 tries	66 1 try	23 2 tries	162 5 tries	68 4 tries	68 1 try	68 1 try	68 1 try	68 1 try	
25	Technische Universität München	6 946	38 1 try	260 4 tries	61 1 try	17 1 try	212 3 tries	198 4 tries	188 1 try	188 1 try	188 1 try	188 1 try	
26	Harvard University	6 965	159 3 tries	244 4 tries	82 1 try	115 2 tries	232 2 tries	35 1 try	182 5 tries	182 5 tries	182 5 tries	182 5 tries	
27	National Chiao Tung University	6 987	75 1 try	289 1 try	182 1 try	32 1 try	223 3 tries	146 1 try					
28	The University of Texas at Austin	6 989	81 2 tries	284 3 tries	138 1 try	42 1 try	105 1 try	239 3 tries					
29	Zhongshan (Sun Yat-sen) University	6 1017	39 1 try	154 4 tries	66 1 try	154 5 tries	273 5 tries	80 1 try	205 4 tries	205 4 tries	205 4 tries	205 4 tries	
30	Stanford University	6 1073	91 2 tries	238 3 tries	99 1 try	78 3 tries	196 1 try	253 4 tries	236 1 try	236 1 try	236 1 try	236 1 try	

Ho Ngan Hang,
Poon Lik Hang,
Yik Wai Pan (CUHK)

Other Contest Rules

Codeforces Round #698 (Div. 1)

Final standings

You may double click into cells (or ctrl+click) to view the submissions history or look the solution

Standings		#	Who	=	*	A	B	C	D	E	F	4000
		#	Who	=	*	500	1000	1500	2250	2750	4000	
1	maroonrk	5882	496	992	1386	1800	1298					
2	panole	5843	492	932	1284	1683	1452					
3	tourist	5533	470	892	1172	1323	1676					
4	Miracle03	5530	494	932	1300	1701	1103					
5	boboniu	4900	494	948	1362	1701	2096					
6	Um_nik	4736	496	952	1398	1890						-4
7	Beng	4725	498	936	1446	1845						-2
8	Radewoosh	4709	494	948	1404	1863						-1
9	dorjilendvaj	4496	-1	494	940	1380	1732					
10	atomicenergy	4460	490	940	1370	1710						
11	Golovanov399	4452	494	936	1380	1642						
12	yhx-12243	4374	442	944	1314	1674						
13	aid	4371	486	912	1308	1665						
14	jcvb	4365	486	936	1362	1579						-3
15	Petr	4357	490	920	1350	1597						
16	Jiangly	4333	494	956	1344	1539						
17	Swistakk	4301	494	672	1434	1701						
18	semiexp	4284	496	844	1360	1584						
19	Marcin_smu	4279	446	920	1296	1629						-1
20	300iq	4230	424	920	1338	1548						-1

Virtual World Finals 2020

Show round overview

The winner of this round will be our Code Jam 2020 World Champion.

Everyone	10	22	10	32	10	10	22	15	27	15	27	
1 Gennady Korotkevich	3110:0	✓	✓	2121:0	✓	✓	25814:0	✓	✓	310:52:0	✓	✓

Standings

per page: 10 20 50 100 1000

1 2 4 8 16 26

Rank	User	Score	A	B	C	D	E	F
1	semiexp	6800 (1)	500	800	1300	1800	-	2400 (1)
2	yutaka1999	6800 (1)	500	800	1300 (1)	1800	-	2400
3	Petr	6400 (6)	500	800	1300 (2)	1800	2000 (4)	-
4	Benq	5100 (3)	500	800	-	1800	2000 (3)	-
5	Um_nik	5100 (3)	500	800	-	1800	2000 (3)	-
6	yokozuna57	5000 (3)	500	800	1300 (2)	-	-	2400 (1)
7	ecnerwala	4400	500	800	1300	1800	-	2400 (1)
8	Stonefeang	4400 (1)	500 (1)	800	1300	1800	-	-
9	Merkurev	4400 (3)	500 (1)	800	1300 (2)	1800	-	-
10	antontrygubO_o	4400 (2)	500	800 (1)	1300 (1)	1800	-	(3)
11	tourist	4400 (3)	500	800	1300 (2)	1800 (1)	-	(4)
12	Lagoon	4400 (6)	500 (1)	800 (3)	1300 (1)	1800 (1)	-	-
13	aid	4400 (2)	500	800	1300 (2)	1800	-	-
14	ugly2333	4400 (1)	500 (1)	800	1300	1800	-	-
15	jiangly	4400 (4)	500	800 (1)	1300 (3)	1800	-	-

Competitive Programming in Real Life

Language	Result
C++11	Wrong Answer
C++11	Wrong Answer
C++11	Wrong Answer
Pascal	Runtime Error
C++11	Compilation Error
Python 3	Wrong Answer
C	Wrong Answer
C++11	Compilation Error
C++11	Time Limit Exceeded
Python 3	Wrong Answer
C	Wrong Answer
Java 8	Wrong Answer
C++11	Time Limit Exceeded
C++11	Wrong Answer
C++11	Time Limit Exceeded
C++11	Wrong Answer
C++11	Wrong Answer
Pascal	Compilation Error
Pascal	Wrong Answer
C++11	Time Limit Exceeded
Pascal	Compilation Error
Pascal	Wrong Answer
C++11	Time Limit Exceeded

C++11	Time Limit Exceeded
Python 3	Wrong Answer
C	Wrong Answer
Java 8	Wrong Answer
C++11	Time Limit Exceeded
C	Wrong Answer
C++11	Wrong Answer
Pascal	Compilation Error
Pascal	Wrong Answer
C++11	Time Limit Exceeded
Pascal	Compilation Error
Pascal	Wrong Answer
C++11	Time Limit Exceeded

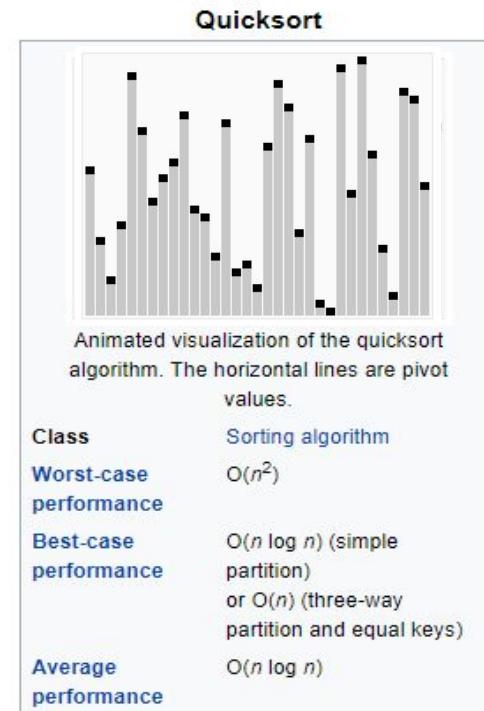
Competitive Programming in Real Life

Competitive Programming in Real Life

- When you just start learning programming, the hardest part is to implement your thoughts into actual code (which should be able to compile and run)
 - Similar to you trying to speak out your thoughts in a foreign language
- But when you get better, you will find out the tasks ask for more than **a solution**. It wants an **efficient** solution.

Competitive Programming in Real Life

- Let's say you need to calculate $1 + 2 + 3 + \dots + N$.
- **Solution 1:** A for loop looping from 1 to N, adding them each to a sum.
- **Solution 2:**
 - Note that you can duplicate all numbers, and pair them up $(1, N), (2, N - 1), (3, N - 2), \dots, (N - 1, 2), (N, 1)$.
 - Every pair sums to $N + 1$. There are N pairs in total.
 - Hence, the sum is **$N * (N + 1) / 2$** .
- You should probably notice that Solution 2 is faster. But how do we say that **formally**? We usually use something called **Big-O notation**.


What is Big-O?

Motivation

- A way to measure the run-time of our program / algorithm
- Commonly used among competitive programming world

Time Complexity

- Best-case performance
- Average performance
- Worst-case performance

Quicksort - Wikipedia

<https://en.wikipedia.org/wiki/Quicksort>

Time Complexity

What we really care:

- Worst-case performance (99% of the time)
- Average performance (1% of the time)
- Best-case performance (nearly never)

About hacking Java's `Array.sort()`: <https://codeforces.com/blog/entry/64109>

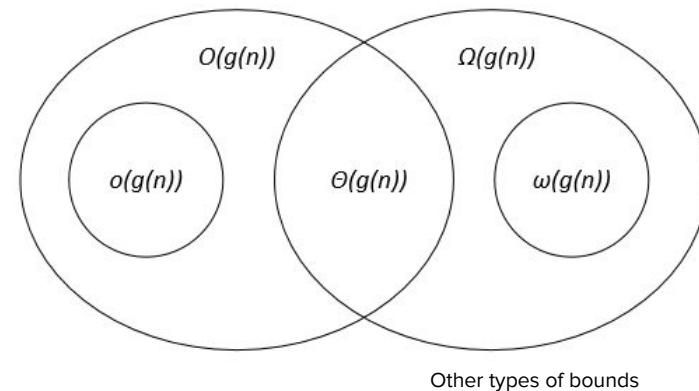
Time Complexity

- Try to express the number of (basic) operations our program will execute
- As a function in terms of inputs

Example:

```
cin >> N >> K;           // 1 operation
for (int i = 1; i <= N; i++) // N operations
    if (i % K == 0)          // 1 operation that happens N times
        ans++;
cout << ans;              // 1 operation

// total  $2N+N/K+2$  operations
```


Big-O Notation

- Big-O notation helps us simplify the time complexity function
- In theory, we are interested in when the inputs could be infinitely large

[advanced] Formal definition:

$f(n) = O(g(n))$ if there exists $n_0, c > 0$ such that

$$f(n) \leq cg(n) \text{ for all } n \geq n_0$$

So, formally $3N^2$ is also $O(N^N)$ but $O(N^2)$ is a tighter known valid bound, thus we would say it's $O(N^2)$

Big-O Notation

Theoretically, we do not care coefficients and constant terms

- $3N+5 \rightarrow O(N)$
- $5N^3+26Q \rightarrow O(N^3+Q)$
- $10000KN^{0.5} \rightarrow O(KN^{0.5})$
- $3N^{2K} \rightarrow O(N^{2K})$
- $500+7000 \rightarrow O(1)$

Big-O Notation

We only care terms that dominate the function

- $N^2 + N + Q \rightarrow O(N^2 + Q)$
- $N^K + N^{0.5K} + K^N \rightarrow O(N^K + K^N)$
- $2^N + N^9 \rightarrow O(2^N)$
- $N^N + N! \rightarrow O(N^N)$
- $N \log N \rightarrow O(N \log N)$
- $\log N + N \rightarrow O(N)$
- $\log_3 N \rightarrow O(\log N)$

Examples

```
cin >> N >> K;           // 1 operation
for (int i = 1; i <= N; i++) // N operations
    if (i % K == 0)        // 1 operation that happens N times
        ans++;
cout << ans;             // 1 operation

// total  $2N + N/K + 2$  operations  $\rightarrow O(N)$  note: assume K never falls in (-1,1)
```

Examples

Count number of pairs (i, j) where $1 \leq i, j \leq N$ and j is a multiple of i

```
cin >> N;
for (int i = 1; i <= N; i++)    // N operations
    for (int j = 1; j <= N; j++) // N operations that happen N times
        if (j % i == 0)
            ans++;
cout << ans;

// total time complexity: O(N2)
```

Examples

- Linear search → $O(N)$
- Binary search → $O(\log N)$

- Bubble sort → $O(N^2)$
- Insertion sort → $O(N^2)$
- Merge sort → $O(N \log N)$

Examples

```
cin >> N;
for (int i = 1; i <= N; i++)
    for (int j = 1; j <= i * i; j++)
        ans++; // how many times?
cout << ans;

//  $1^2+2^2+3^2+4^2+\dots+N^2 = ?$ 
// =  $N(N+1)(2N+1)/6$ 
// total time complexity:  $O(N^3)$ 
```

Examples

```
cin >> N;
for (int i = 1; i < N; i++)
    for (int j = i * i; j < (i+1) * (i+1); j++)
        ans++; // how many times?
cout << ans;

//  $(2^2-1^2)+(3^2-2^2)+(4^2-3^2)+\dots+(N^2-(N-1)^2) = N^2-1^2$ 
// total time complexity:  $O(N^2)$ 
```

Examples

Count number of pairs (i, j) where $1 \leq i, j \leq N$ and j is a multiple of i

Previous code

```
cin >> N;
for (int i = 1; i <= N; i++)
    for (int j = 1; j <= N; j++)
        if (j % i == 0)
            ans++;
cout << ans;

// total time complexity:  $O(N^2)$ 
```

New code

```
cin >> N;
for (int i = 1; i <= N; i++)
    for (int j = i; j <= N; j += i)
        ans++; //  $j \% i == 0$  always
cout << ans;

// time complexity is better than  $O(N^2)$  :D
// why?

//  $N/1+N/2+N/3+N/4+\dots+N/N = ?$ 
// It's  $N\lg N$  [check out Harmonic Series]

// Therefore, time complexity is  $O(N\lg N)$ 
```

Comparisons

Is $O(N)$ always worse than $O(1)$?

Is $O(N \lg N)$ always worse than $O(N)$?

- Yes and no
- Yes: in computer science theory, we care about when N is infinitely large
- No: in real-life, it depends on your program, constant terms still matter

Estimations

A modern CPU can execute more than 10^9 instructions per second

When $N=10^9$, $O(N)$ program always finish in 1 second?

Some factors to think about:

- Type of instructions (e.g. bitwise operations are faster than modulus and divisions)
- Type of functions/containers (e.g. `std::sort` v.s. `std::set`)
- Data type and judging machine (e.g. 64-bit computations on 32-bit machine)

Estimations

For $TL=1s$,

- $O(N)$ $\rightarrow N \leq 10^7$
- $O(N\lg N)$ $\rightarrow N \leq 10^6$
- $O(N^2)$ $\rightarrow N \leq 5000$
- $O(N^3)$ $\rightarrow N \leq 300$
- $O(N^4)$ $\rightarrow N \leq 100$
- $O(2^N)$ $\rightarrow N \leq 20$
- $O(N!)$ $\rightarrow N \leq 10$

Estimations

For $TL=1s$,

- $N \leq 10^7$
→ maybe $O(N)$?
- $N \leq 10^5, 5 \times 10^5, 10^6$
→ maybe $O(N \lg N)$? or $O(N)$, $O(N \lg^2 N)$
- $N \leq 1000, 5000$
→ maybe $O(N^2)$? or $O(N^2 \lg N)$
- Large coefficient & constant terms would affect this decision.

For $TL=1s$,

- $O(N)$ → $N \leq 10^7$
- $O(N \lg N)$ → $N \leq 10^6$
- $O(N^2)$ → $N \leq 5000$
- $O(N^3)$ → $N \leq 300$
- $O(N^4)$ → $N \leq 100$
- $O(2^N)$ → $N \leq 20$
- $O(N!)$ → $N \leq 10$

Amortized Complexity

Sometime, the time complexity is more accurate when analyze as a whole, but not as individual parts.

Consider implementing a data structure that supports the following:

- `push(x)` - push x into the stack
- `pop()` - pop the top element in the stack (if it exists)
- `multipop(n)` - pop the top n elements in the stack, or until the stack is empty

What is the time complexity of the program **handling N operations** on this data structure?

Amortized Complexity

If analyze the time complexity of each operations individually

- $\text{push}(x)$ - $O(1)$
- $\text{pop}()$ - $O(1)$
- $\text{multipop}(n)$ - $O(N)$

What is the time complexity of the program **handling N operations** on this data structure? $O(N^2)$

Does this make sense?

Amortized Complexity

If analyze the time complexity of each operations individually

- $\text{push}(x)$ - $O(1)$
- $\text{pop}()$ - $O(1)$
- $\text{multipop}(n)$ - $O(N)$

What is the time complexity of the program **handling N operations** on this data structure? $O(N^2)$

- **$\text{multipop}(n)$** is only costly if there are many **$\text{push}(x)$** operations before.
How do we formulate a better time complexity bound by considering both the costly operations and cheap operations?

Amortized Complexity

- `push(x)` - push x into the stack
- `pop()` - pop the top element in the stack (if it exists)
- `multipop(n)` - pop the top n elements in the stack, or until the stack is empty

You may observe that the time cost is actually bounded by the number of elements that have been push into the stack, that is **$O(N)$ in total**.

- By distributing this time cost onto each operation, we can say that the operations are **amortized $O(1)$** .

Amortized Complexity

There are more formal ways of analysing the algorithm's amortized complexity. From [wiki](#), there are

- **Aggregate method** - calculate amortized complexity by $T(n) / n$
- **Accounting method** - define a cost for each operation
- **Potential method** - define a *potential function* for the state of the data structure, and analysis on how the operation change the potential

They are not really useful during contest time (usually you should just reason it by intuition), but you may encounter them down the road for [advanced data structure](#).

Amortized Complexity

Amortized complexity also comes into play for commonly used C++ standard container like `std::vector`.

```
const int N = 10'000'000;

int main() {
    vector<int> v;
    for (int i = 0; i < N; i++) {
        v.push_back(i); // what's the time complexity? O(1)?
    }
}

// In fact, it's only amortized O(1)
```

http://cplusplus.com/reference/vector/vector/push_back/
<https://assets.hkoi.org/training2019/adv-cpp.pdf>

Amortized Complexity

```

#include <bits/stdc++.h>
using namespace std;
using namespace chrono;

const int N = 10'000'000;

int main() {
    vector<int> t, v;
    for (int i = 0; i < N; i++) {
        auto t1 = high_resolution_clock::now();
        v.push_back(i);
        auto t2 = high_resolution_clock::now();
        auto duration = duration_cast<microseconds>(t2 - t1).count();
        t.push_back(duration);
    }

    int total = accumulate(t.begin(), t.end(), 0, std::plus<int>());

    sort(v.begin(), v.end(), [&t](const int& lhs, const int& rhs) {
        return t[lhs] > t[rhs];
    });

    printf("total time = %6dus\n", total);
    printf("median = %6dus\n", t[v[N / 2]]);
    printf("\n");

    for (int i = 0; i < 8; i++) {
        printf("t[%7d] = %6dus [%7.4f%%]\n", v[i], t[v[i]], t[v[i]] *
100. / total);
    }
}

```

total time = 179725us	
median = 0us	
t[8388608] = 27744us	[15.4369%]
t[4194304] = 14108us	[7.8498%]
t[2097152] = 6905us	[3.8420%]
t[1048576] = 3847us	[2.1405%]
t[524288] = 1935us	[1.0766%]
t[262144] = 1010us	[0.5620%]
t[131072] = 498us	[0.2771%]
t[65536] = 264us	[0.1469%]

~~Accepted~~

No more TLE!