
Introduction to Competitive Programming

Introduction to
Competitive Programming

Ethen Yuen {ethening}
2026-02-14

Introduction to Competitive Programming 2

What is Competitive Programming?

“Competitions where contestants write computer programs to solve a set of
well-defined problems within a limited amount of time. The judging is based on
correctness and time spent.”

Introduction to Competitive Programming 3

What is Competitive Programming?

“Competitions where contestants write computer programs to solve a set of
well-defined problems within a limited amount of time. The judging is based on
correctness and time spent.”

Common misconceptions: Competitive programming is all about writing code.

Introduction to Competitive Programming 4

What is Competitive Programming?

“Competitions where contestants write computer programs to solve a set of
well-defined problems within a limited amount of time. The judging is based on
correctness and time spent.”

Actually, competitive programming focuses mainly on problem solving, and to
represent your solution in a formal way (that is, by writing code).
● In HKOI Training, we will teach you both 1. problem solving and 2. coding effectively.

Introduction to Competitive Programming 5

Competitive Programming VS Math Olympiad

MO
OI

“... solve a set of well-defined problems …”

Introduction to Competitive Programming 6

Competitive Programming VS Math Olympiad

While they do share a lot of common problem solving techniques, they care
about different parts of the problem generally.

https://www.reddit.com/r/mathmemes/comments/p2u4xh/who_wants_to_be_applicable/

Introduction to Competitive Programming 7

Competitive Programming VS Math Olympiad

Mathematics Olympiad
● Prove the existence of …
● Prove the characteristics of …
● Find the greatest k such that …

Competitive Programming
● Find the number of … after n days, where 1

≤ n ≤ 109. The program should terminated
within 1.00 second.

● Given input files of 2D points, connect the
points using the least number of line
segment, scoring is determined by how
many lines you use.

We also can have solution in competitive programming (that
doesnʼt make sense in Math Olympiad) like:
● Letʼs randomly pick 100 candidates and see if they are the

answer, else return impossible

https://zh.m.wiktionary.org/zh-hant/%E2%89%A4
https://zh.m.wiktionary.org/zh-hant/%E2%89%A4

Introduction to Competitive Programming

https://www.reddit.com/r/ProgrammerHumor/comments/i49h96/jobs_requirements/

8

Competitive Programming VS Real-world Programming

https://www.reddit.com/r/ProgrammerHumor/comments/i49h96/jobs_requirements/

Introduction to Competitive Programming 9

Competitive Programming VS Real-world Programming

● Languages
Any (Python, JavaScript, Java, C, C++,
Assembly, …)

● Applications
websites, softwares, mobiles apps, robots,
OSs, bots, …

● Knowledge
domain-based, e.g. web/app frameworks,
game engines, …

● What we care
code maintainability, readability,
sometimes efficiency, ...

● Languages
mostly C++ (because it’s fast!)

● Applications
not really for real-life use, and you
won’t have N=105 friends

● Knowledge
data structures, algorithms, maybe
some maths, basic coding

● What we care
time efficiency (99.99% of the time),
space efficiency, ...

“well-defined problems” (?)“solve a set of well-defined problems”

Introduction to Competitive Programming 10

Why Competitive Programming?

● Strengthen your problem solving / logical thinking skills
● Maybe strengthen your coding skills
● Learn more stuffs related to Computer Science

● Learn how to be determined and strong to aim for the top

Introduction to Competitive Programming 11

Why Competitive Programming (Sport Programming)?

● Learn how to be determined and strong to aim for the top

● Similar to sports activity
○ Always trying to be beat your personal best
○ Learn from your peers and compete with them
○ Constantly hold yourself to a high standard
○ Learn to cope with failure
○ Become the best of the best to be a HK representative

Introduction to Competitive Programming 12

Why Competitive Programming (Sport Programming)?

Great blog to read: My winning theory
in IOI 2018 & 2019 — Why I won 2
golds in IOI

“The competition results will not be determined
until the last minutes, the last second, and even
the last 0.1 second. The person who never gives
up until the last moment will win.”

(The author do 10-hours long virtual
contest to prepare for 5-hours IOI and
do marathon (actual running) to train
physical and mental strength.)

https://codeforces.com/blog/entry/69100
https://codeforces.com/blog/entry/69100
https://codeforces.com/blog/entry/69100

Introduction to Competitive Programming 13

Why Competitive Programming (Sport Programming)?

● Even putting all the tangible benefits aside. It’s still quite fun to challenge
yourself intellectually!

● I hope you can find the enjoyment within competitive programming.

● "Is it still worth
learning coding
and competitive
programming?"

Introduction to Competitive Programming

Starting from HKOI

What’s next after HKOI Final Event?
Trainings & Competitions!

More details on https://hkoi.org/.

14

Regular Training
For HKOI medalists and other interested
secondary school students.

Feb

Team Formation Test
Result of this test is used to select members for
external competitions and other learning
activities.

May

External Competitions
Such as China National Olympiad in Informatics,
International Olympiad in Informatics.

Sep

Hong Kong Team Training
By invitation, for members selected for external
competitions.

Aug

We are here!

https://hkoi.org/

Introduction to Competitive Programming 15

Regular Training

Lecture
● Topics on different algorithmic skills (and more)

○ Data Structures
○ Graph Theory
○ Dynamic Programming
○ Maths
○ Ad-hoc Tricks
○ Computer Science related knowledge

Minicomp
● 4 Mini Competitions to get you prepared for the

Team Formation Test.

Introduction to Competitive Programming 16

Regular Training

Lecturer Lineup
● Trainers who are previously HKOI trainees!

○ Undergraduates, postgrads and
software engineers in different fields

○ Ex-HK representatives
○ Still actively competing in contests

● Feel free to ask us any questions about the
lectures or tasks or get general tips on
competitive programming.

https://hkoi.org/en/about-us/

https://hkoi.org/en/about-us/

Introduction to Competitive Programming

Regular Training

17

Structure
● Topics are classified into 4 progressive levels
● Practice tasks for each level for self-learning and

lecture-use.

Level D
HKDSE

Level C
HKOI

Level B
Training

Level A
Training

Introduction to Competitive Programming 18

Regular Training

Structure
● Foundation topics (mostly Level C & D) will

be taught in video-lectures format.
○ Recursion, Divide and Conquer Part 1 / HKOI
○ Searching and Sorting Part 1 / HKOI
○ Data Structures (I) Part 1 / HKOI
○ Greedy Algorithms Part 1 / HKOI
○ More to come…
○ For new training team members and

non-trainees, you are strongly suggested to
learn these topics on your own.

https://youtu.be/U2RtORrp48I?si=yzNn5938iwOYFaTK
https://youtu.be/_Bh0NKCKfPk?si=kTHgoWzAxIIOt1Av
https://youtu.be/My9J-EkktXY?si=nZuLXqrtv0WN2sJd
https://youtu.be/aj3BKEytKpM?si=sfha0liHpOieUAR8

Introduction to Competitive Programming 19

Regular Training
Structure

● AM Session: divided into level A & level B
● Level B

○ For first-year training team students
○ Fundamental algorithms

● Level A
○ For experienced students
○ Advanced topics

● Entry Criteria for Level A (any one)
○ Received HKOI Training Team 2025 Certificate

of Attendance
○ Participated in HKOI Training Camp 2025.
○ Received Gold Medal award in HKOI 2025/26.
○ Solved 200 or more tasks on HKOI Online Judge.

Introduction to Competitive Programming

Attendance Policy

● No session is compulsory, but we do take attendance.
● Attendance is taken separately for AM and PM sessions.
● You must take attendance if you are present.
● You may be considered absent if you arrive late / leave early.
● Training Team members who attend at least 60% of the sessions (each day of

Team Formation Test and APIO each counts as 2 sessions) will receive a certificate.

20

Introduction to Competitive Programming 21

Online Judge
● Mainly, we use the HKOI Online

Judge for training purpose.
● Tasks for previous HKOI events,

other local events, minicomps,
and team formation tests are
available.

https://judge.hkoi.org/
https://judge.hkoi.org/

Introduction to Competitive Programming

Team Formation Test

22

HKOI
Medallists

SDIC Gold
Medallists

HKGOI
Medallists

IOI
NOI

EGOI

Team Formation Test (May, 2 days) EGOI Team Formation
Test (March, 1 day)

Training Camp

etc…

Introduction to Competitive Programming

HKOI Training Camp

23

Training Camp 2025

*The camp is mandatory for all HK representatives.

Introduction to Competitive Programming

ACM-HK Contest / ICPC Hong Kong Regional Contest

24

ACM-HK Programming Contest 2025 ICPC Hong Kong Regional Contest 2025

Introduction to Competitive Programming

National Olympiad in Informatics

25

NOI 2025, Shaoxing

Introduction to Competitive Programming

International Olympiad in Informatics

26

IOI 2025, Sucre, Bolivia

Introduction to Competitive Programming

Other External Competitions

27

● APIO - Asia Pacific Informatics Olympiad
● IOM - International Olympiad of Metropolises

IOM 2019, Moscow IOM 2021, Online

Introduction to Competitive Programming

What awaits you in front…

28

https://ioi2026.uz/

IOI 2026, Tashkent, Uzbekistan

“Uzbekistan, officially known as the
Republic of Uzbekistan, is a landlocked
country in Central Asia.”

https://ioi2026.uz/

Introduction to Competitive Programming

What awaits you in front…

29

https://egoi2026.it/

EGOI 2026, Cesenatico, Italy

https://egoi2026.it/

Introduction to Competitive Programming

Important Notice

30

● Make sure your travel documents have at least 6 month validity beyond
the date of departure from the Hong Kong.

● The registration deadline of external competitions is usually close to the
selection test.

● You should renew your Mainland Travel Permit & Passport now,
regardless of how likely you would become a HK representative.

● We will select the next contestant in the ranking if there are troubles with
the documents’ validity.

Introduction to Competitive Programming

The World of Competitive Programming

ICPC - International Collegiate Programming Contest
● Team-based contest for college students

○ Regional
○ Regional Final
○ World Final

● Each solve earns you 1 balloon

31

Introduction to Competitive Programming

The World of Competitive Programming

Codeforces: https://codeforces.com/ (recommended)
● Regular contests of different divisions, compete with worldwide top players
● Most recognized Elo rating system (if you heard about someone showing off their “color”)

32

https://codeforces.com/

Introduction to Competitive Programming

The World of Competitive Programming

AtCoder: https://atcoder.jp/ (recommended)
● Japan-based contest site (more observation-based tasks)
● Algorithmic contest & Heuristic contest

33

https://atcoder.jp/

Introduction to Competitive Programming

The World of Competitive Programming

Project Euler: https://projecteuler.net/about
● Judge that only accepted numerical answer, more mathy tasks

34

https://projecteuler.net/about

Introduction to Competitive Programming

The World of Competitive Programming

OI Checklist: https://oichecklist.pythonanywhere.com/ (strongly recommended)
● Checklist for hard problems from past OIs of different countries

35

https://oichecklist.pythonanywhere.com/

Introduction to Competitive Programming

Common Contest Rules

IOI Style
● 3 to 5 tasks, 100 points each (usually)
● Each task will be divided into subtasks (or cases)
● Rank based on points you get

● Solving speed is less important
● Common in high school contests

○ HKOI Final Event, HK TFT (Team Formation Test)

IOI 2021 Scoreboard
https://ranking.ioi2021.sg/

36

Harris Leung (HKG)

https://ranking.ioi2021.sg/

Introduction to Competitive Programming

Common Contest Rules

ICPC Style
● 8 to 12 tasks (usually)
● No subtasks
● Rank based on tasks solved,

then by time penalty

● Solving speed is important
● Common in uni contests

○ ICPC, HKOI Team Minicomp

ICPC World Finals 2019 Scoreboard
https://icpc.global/scoreboard/

37

Ho Ngan Hang,
Poon Lik Hang,

Yik Wai Pan (CUHK)

https://icpc.global/scoreboard/

Introduction to Competitive Programming

Other Contest Rules

38

Introduction to Competitive Programming

Competitive Programming in Real Life

39

Introduction to Competitive Programming

Competitive Programming in Real Life

40

Introduction to Competitive Programming

Competitive Programming in Real Life

● When you just start learning programming, the hardest part is to
implement your thoughts into actual code (which should be able to
compile and run)
○ Similar to you trying to speak out your thoughts in a foreign language

● But when you get better, you will find out the tasks ask for more than a
solution. It wants an efficient solution.

41

Introduction to Competitive Programming

● Let’s say you need to calculate 1 + 2 + 3 + … + N.

● Solution 1: A for loop looping from 1 to N, adding them each to a sum.
● Solution 2:

○ Note that you can duplicate all numbers, and pair them up (1, N), (2, N - 1), (3,
N - 2), …, (N - 1, 2), (N, 1).

○ Every pair sums to N + 1. There are N pairs in total.
○ Hence, the sum is N * (N + 1) / 2.

● You should probably notice that Solution 2 is faster. But how do we say that
formally? We usually use something called Big-O notation.

Competitive Programming in Real Life

42

Introduction to Competitive Programming

What is Big-O?

43

Introduction to Competitive Programming

Motivation

● A way to measure the run-time of our program / algorithm
● Commonly used among competitive programming world

44

Introduction to Competitive Programming

Time Complexity

● Best-case performance
● Average performance
● Worst-case performance

Quicksort - Wikipedia
https://en.wikipedia.org/wiki/Quicksort

45

https://en.wikipedia.org/wiki/Quicksort

Introduction to Competitive Programming

Time Complexity

What we really care:
● Worst-case performance (99% of the time)
● Average performance (1% of the time)
● Best-case performance (nearly never)

About hacking Java’s Array.sort(): https://codeforces.com/blog/entry/64109

46

https://codeforces.com/blog/entry/64109

Introduction to Competitive Programming

Time Complexity

● Try to express the number of (basic) operations our program will execute
● As a function in terms of inputs

Example:
cin >> N >> K; // 1 operation
for (int i = 1; i <= N; i++) // N operations
 if (i % K == 0) // 1 operation that happens N times
 ans++; // 1 operation that happens N/K times
cout << ans; // 1 operation

// total 2N+N/K+2 operations

47

Introduction to Competitive Programming

Big-O Notation

● Big-O notation helps us simplify the time complexity function
● In theory, we are interested in when the inputs could be infinitely large

[advanced] Formal definition:
f(n) = O(g(n)) if there exists n0, c > 0 such that

f(n) ≤ cg(n) for all n ≥ n0

So, formally 3N2 is also O(NN) but O(N2) is a tighter known valid bound, thus we would say it’s O(N2)

48

Other types of bounds

Introduction to Competitive Programming

Big-O Notation

Theoretically, we do not care coefficients and constant terms
● 3N+5
● 5N3+26Q
● 10000KN0.5

● 3N2K

● 500+7000

49

→ O(N)
→ O(N3+Q)
→ O(KN0.5)
→ O(N2K)
→ O(1)

Introduction to Competitive Programming

Big-O Notation

We only care terms that dominate the function
● N2+N+Q
● NK+N0.5K+KN

● 2N+N9

● NN+N!
● NlogN
● logN+N
● log3N

50

→ O(N2+Q)
→ O(NK+KN)
→ O(2N)
→ O(NN)
→ O(NlogN)
→ O(N)
→ O(logN)

Introduction to Competitive Programming

Examples
cin >> N >> K; // 1 operation
for (int i = 1; i <= N; i++) // N operations
 if (i % K == 0) // 1 operation that happens N times
 ans++; // 1 operation that happens N/K times
cout << ans; // 1 operation

// total 2N+N/K+2 operations → O(N) note: assume K never falls in (-1,1)

51

Introduction to Competitive Programming

Examples

Count number of pairs (i, j) where 1 ≤ i, j ≤ N and j is a multiple of i
cin >> N;
for (int i = 1; i <= N; i++) // N operations
 for (int j = 1; j <= N; j++) // N operations that happen N times
 if (j % i == 0)
 ans++;
cout << ans;

// total time complexity: O(N2)

52

Introduction to Competitive Programming

Examples

● Linear search → O(N)
● Binary search → O(logN)

● Bubble sort → O(N2)
● Insertion sort → O(N2)
● Merge sort → O(NlogN)

53

Introduction to Competitive Programming

Examples
cin >> N;
for (int i = 1; i <= N; i++)
 for (int j = 1; j <= i * i; j++)
 ans++; // how many times?
cout << ans;

// 12+22+32+42+...+N2 = ?
// = N(N+1)(2N+1)/6
// total time complexity: O(N3)

54

Introduction to Competitive Programming

Examples
cin >> N;
for (int i = 1; i < N; i++)
 for (int j = i * i; j < (i+1) * (i+1); j++)
 ans++; // how many times?
cout << ans;

// (22-12)+(32-22)+(42-32)+...+(N2-(N-1)2) = N2-12

// total time complexity: O(N2)

55

Introduction to Competitive Programming

Examples

Previous code

cin >> N;
for (int i = 1; i <= N; i++)
 for (int j = 1; j <= N; j++)
 if (j % i == 0)
 ans++;
cout << ans;

// total time complexity: O(N2)

New code

cin >> N;
for (int i = 1; i <= N; i++)
 for (int j = i; j <= N; j += i)
 ans++; // j % i == 0 always
cout << ans;

// time complexity is better than O(N2) :D
// why?

// N/1+N/2+N/3+N/4+...+N/N = ?
// It’s NlgN [check out Harmonic Series]

// Therefore, time complexity is O(NlgN)

Count number of pairs (i, j) where 1 ≤ i, j ≤ N and j is a multiple of i

56

Introduction to Competitive Programming

Comparisons

Is O(N) always worse than O(1)?
Is O(NlgN) always worse than O(N)?
● Yes and no
● Yes: in computer science theory, we care about when N is infinitely large
● No: in real-life, it depends on your program, constant terms still matter

57

Introduction to Competitive Programming

Estimations

A modern CPU can execute more than 109 instructions per second
When N=109, O(N) program always finish in 1 second?

Some factors to think about:
● Type of instructions (e.g. bitwise operations are faster than modulus and divisions)
● Type of functions/containers (e.g. std::sort v.s. std::set)
● Data type and judging machine (e.g. 64-bit computations on 32-bit machine)

58

Introduction to Competitive Programming

Estimations

For TL=1s,
● O(N) → N ≤ 107

● O(NlgN) → N ≤ 106

● O(N2) → N ≤ 5000
● O(N3) → N ≤ 300
● O(N4) → N ≤ 100
● O(2N) → N ≤ 20
● O(N!) → N ≤ 10

59

Introduction to Competitive Programming

Estimations

For TL=1s,
● N ≤ 107

→ maybe O(N)?
● N ≤ 105, 5⨯105, 106

→ maybe O(NlgN)? or O(N), O(Nlg2N)
● N ≤ 1000, 5000

→ maybe O(N2)? or O(N2lgN)
● Large coefficient & constant terms would affect this decision.

60

For TL=1s,
● O(N) → N ≤ 107

● O(NlgN) → N ≤ 106

● O(N2) → N ≤ 5000
● O(N3) → N ≤ 300
● O(N4) → N ≤ 100
● O(2N) → N ≤ 20
● O(N!) → N ≤ 10

Introduction to Competitive Programming

Amortized Complexity

Sometime, the time complexity is more accurate when analyze as a whole, but
not as individual parts.

Consider implementing a data structure that supports the following:
● push(x) - push x into the stack
● pop() - pop the top element in the the stack (if it exists)
● multipop(n) - pop the top n elements in the stack, or until the stack is empty

What is the time complexity of the program handling N operations on this
data structure?

61

Introduction to Competitive Programming

Amortized Complexity

If analyze the time complexity of each operations individually
● push(x) - O(1)
● pop() - O(1)
● multipop(n) - O(N)

What is the time complexity of the program handling N operations on this
data structure? O(N2)

Does this make sense?

62

Introduction to Competitive Programming

Amortized Complexity

If analyze the time complexity of each operations individually
● push(x) - O(1)
● pop() - O(1)
● multipop(n) - O(N)

What is the time complexity of the program handling N operations on this
data structure? O(N2)
● multipop(n) is only costly if there are many push(x) operations before.

How do we formulate a better time complexity bound by considering both the
costly operations and cheap operations?

63

Introduction to Competitive Programming

● push(x) - push x into the stack
● pop() - pop the top element in the the stack (if it exists)
● multipop(n) - pop the top n elements in the stack, or until the stack is empty

You may observe that the time cost is actually bounded by the number of
elements that have been push into the stack, that is O(N) in total.
● By distributing this time cost onto each operation, we can say that the operations

are amortized O(1).

Amortized Complexity

64

Introduction to Competitive Programming

There are more formal ways of analysing the algorithm’s amortized
complexity. From wiki, there are
● Aggregate method - calculate amortized complexity by T(n) / n
● Accounting method - define a cost for each operation
● Potential method - define a potential function for the state of the data structure,

and analysis on how the operation change the potential

They are not really useful during contest time (usually you should just reason it
by intuition), but you may encounter them down the road for advanced data
structure.

Amortized Complexity

65

https://en.wikipedia.org/wiki/Amortized_analysis
https://assets.hkoi.org/training2024/ds-potential.pdf
https://assets.hkoi.org/training2024/ds-potential.pdf

Introduction to Competitive Programming

Amortized Complexity

Amortized complexity also comes into play for commonly used C++ standard
container like std::vector.

const int N = 10'000'000;

int main() {
 vector<int> v;
 for (int i = 0; i < N; i++) {
 v.push_back(i); // what’s the time complexity? O(1)?
 }
}

// In fact, it’s only amortized O(1)

http://cplusplus.com/reference/vector/vector/push_back/
https://assets.hkoi.org/training2019/adv-cpp.pdf

66

http://cplusplus.com/reference/vector/vector/push_back/
https://assets.hkoi.org/training2019/adv-cpp.pdf

Introduction to Competitive Programming

Amortized Complexity
#include <bits/stdc++.h>
using namespace std;
using namespace chrono;

const int N = 10'000'000;

int main() {
 vector<int> t, v;
 for (int i = 0; i < N; i++) {
 auto t1 = high_resolution_clock::now();
 v.push_back(i);
 auto t2 = high_resolution_clock::now();
 auto duration = duration_cast<microseconds>(t2 - t1).count();
 t.push_back(duration);
 }

 int total = accumulate(t.begin(), t.end(), 0, std::plus<int>());

 sort(v.begin(), v.end(), [&t](const int& lhs, const int& rhs) {
 return t[lhs] > t[rhs];
 });

 printf("total time = %6dus\n", total);
 printf(" median = %6dus\n", t[v[N / 2]]);
 printf("\n");

 for (int i = 0; i < 8; i++) {
 printf("t[%7d] = %6dus [%7.4f%%]\n", v[i], t[v[i]], t[v[i]] *
100. / total);
 }
}

total time = 179725us
 median = 0us

t[8388608] = 27744us [15.4369%]
t[4194304] = 14108us [7.8498%]
t[2097152] = 6905us [3.8420%]
t[1048576] = 3847us [2.1405%]
t[524288] = 1935us [1.0766%]
t[262144] = 1010us [0.5620%]
t[131072] = 498us [0.2771%]
t[65536] = 264us [0.1469%]

67

Introduction to Competitive Programming

Accepted
No more TLE!

68

