

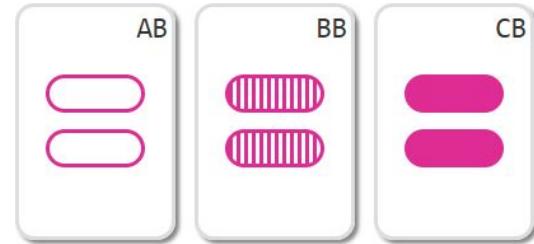
S263 - Set

Daniel Hsieh {QwertyPi}
2026-02-14

Background

Problem Idea by QwertyPi

Preparation by QwertyPi, firewater, WongChun1234



Inspired by the senior heat question that inspired by the game SET

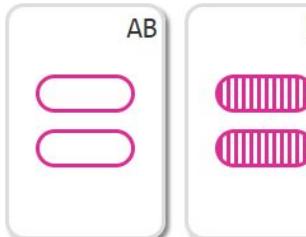
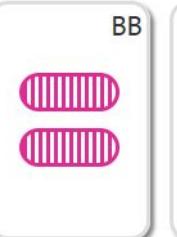
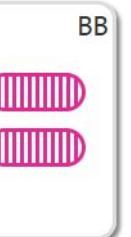
6. Complete the program $f(a, b, c)$ so that, for integers $1 \leq a, b, c \leq 3$, it returns True (C++: `true`) if and only if a, b, c are either all the same or all different.

完成程式 $f(a, b, c)$ ，對於滿足 $1 \leq a, b, c \leq 3$ 的整數，當且僅當 a, b, c 全部相同或全部不同時回傳 True (C++: `true`)。

Solution: $(a + b + c) \% 3 == 0$

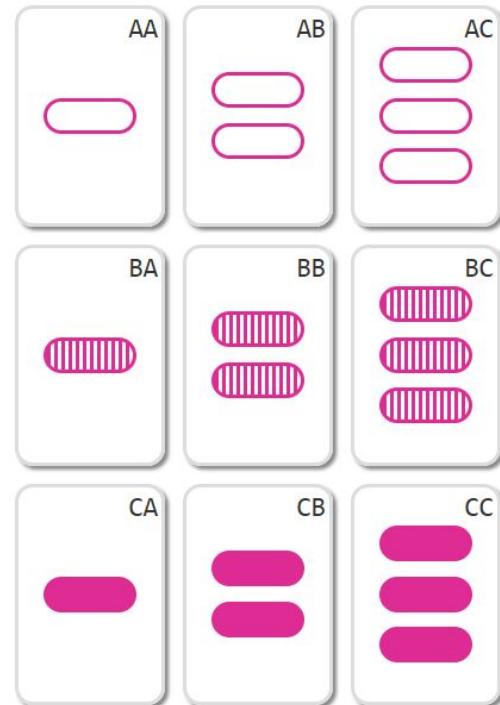
Notations

- **Card:** L features, each 3 possibilities
 - encoded by a length-L ABC string
- **Deck:** consists of each of the 3^L unique cards
- **Set:** a collection of 3 cards, each feature either all same or all different



Valid Sets

Complete Deck of L = 2



Problem Restatement

Given N (≤ 60000) cards, each of L (≤ 9) features on a table.

Partition the cards into **valid sets** by adding **complete decks** onto the table.

It is guaranteed that the game can be won in all the test cases.

- A simple counterexample is A A B - it is not solvable no matter how many decks you added
- In all the testcases \neq Over all the possibilities

You cannot add too many complete decks.

- Total number of cards = $N + M \times 3^L$ must not exceed 6×10^5 , M the number of decks added
- Mostly affect the last subtask

Subtasks

For all cases: $3 \leq N \leq 60000$, $1 \leq L \leq 9$

Subtask	Score	L	Additional Constraints
1	7	≤ 9	Given cards form a complete deck
2	12	$= 1$	/
3	16	≤ 2	Exactly one card starts with B / C
4	21		/
5	12	≤ 4	/
6	32	≤ 9	/

Statistics

100 points $0 + 0 + 0 + 1 = 1$

68 points $0 + 0 + 0 + 1 = 1$

56 points $0 + 0 + 1 + 2 = 3$

35 points $0 + 1 + 2 + 2 = 5$

28 points $0 + 0 + 1 + 1 = 2$

19 points $7 + 11 + 11 + 3 = 32$

12 points $0 + 3 + 3 + 0 = 6$

7 points $0 + 1 + 1 + 0 = 2$

0 points $10 + 8 + 0 + 0 = 18$

First and Only Solve by
dbsculver0412 at **2h 35m 15s.**

Subtask 1 (7%, Given cards form a deck)

Note that the cards XA , XB , XC forms a set where X is a string of length $L - 1$.

Since every card appears exactly once, we can form all sets by looping through all possibilities of X .

How can we do that?

Method 1: Use recursion to enumerate

Method 2: Simply input and sort the cards

Number of extra decks: $M = 0$

Subtask 2 (12%, L = 1)

From now on, we denote $\text{cnt}[X]$ be the number of appearance of the card X .

Observation 1. When $L = 1$, the game can be won if and only if

$$\text{cnt}[A] \% 3 = \text{cnt}[B] \% 3 = \text{cnt}[C] \% 3$$

What if say $\text{cnt}[A] \% 3 \neq \text{cnt}[B] \% 3$ initially? Observe that if we

- form a set of $X \ X \ X$ ($X = A, B, C$): none of $\text{cnt}[X] \% 3$ is changed
- form a set of $A \ B \ C$: all $\text{cnt}[X] \% 3$ change to $(\text{cnt}[X] - 1) \% 3$
- request a deck of $A \ B \ C$: all $\text{cnt}[X] \% 3$ change to $(\text{cnt}[X] + 1) \% 3$

Therefore, $\text{cnt}[A] \% 3 \neq \text{cnt}[B] \% 3$ still holds no matter what

Which means $\text{cnt}[A]$ and $\text{cnt}[B]$ cannot both be 0!

Subtask 2 (12%, L = 1)

From now on, we denote $\text{cnt}[X]$ be the number of appearance of the card X.

Observation 1. When $L = 1$, the game can be won if and only if

$$\text{cnt}[A] \% 3 = \text{cnt}[B] \% 3 = \text{cnt}[C] \% 3$$

It is guaranteed that the game can be won, so we can assume this condition.

The game can be won by forming

- $(\text{cnt}[X] // 3)$ sets of X X X where $X = A, B, C$
- $(\text{cnt}[A] \% 3)$ sets of A B C

Number of extra decks: $M = 0$

Subtask 3 (16%, L = 2, Exactly one card starts with B / C)

Observation 2. Given any two cards X and Y, we can find the **unique third card** Z such that X Y Z forms a set.

Card X	A	B	A	B	C
Card Y	A	B	C	C	B
Card Z	?	?	?	?	?

Subtask 3 (16%, L = 2, Exactly one card starts with B / C)

Observation 2. Given any two cards X and Y, we can find the **unique third card Z** such that X Y Z forms a set.

Card X	A	B	A	B	C
Card Y	A	B	C	C	B
Card Z	A	B	B	A	A

You can compute that position by position (directly from definition):

- Two equal chars then keep it
- Two different chars then pick the third one

Subtask 3 (16%, L = 2, Exactly one card starts with B / C)

There is only one card starts with B / C, say BY and CZ.

Therefore, we can find the third card AX where AX BY CZ forms a set.

Case I If $\text{cnt}[AX] > 0$, then after playing the set AX BY CZ, we are left with all cards start with A - that means we can simply reuse the algorithm for L = 1!

Case II What if $\text{cnt}[AX] = 0$? We can simply **request a deck** and play the sets BA BB BC and CA CB CC - then we can proceed exactly as Case I!

Number of extra decks: M = 1

General Case (21% / 12% / 32%, $L = 2 / L \leq 4 / L \leq 9$)

From now on, our target would be the general case.

As you can see from subtask 3, one of the tricky points is: how to use all the cards exactly and avoid the card count going to the negative?

Observation 3. We can actually **ignore whether the card count goes to the negative**, and just make all the `cnt[X]` **divisible by 3** for all card x. We then fix the negative counts by adding decks and form sets of identical cards.

General Case (21% / 12% / 32%, $L = 2 / L \leq 4 / L \leq 9$)

Observation 3. We can actually ignore whether the card count goes to the negative, and just make all the $\text{cnt}[X]$ divisible by 3 for all card X . We then fix the negative counts by adding decks and form sets of identical cards.

```
# Step 1: omitted, magical way to make  $\text{cnt}[X] \% 3 == 0$  for all  $X$  (allow negative)
M := max(0, -minX( $\text{cnt}[X]$ )) # Step 2: request decks to make  $\text{cnt}[X] \geq 0$  for all  $X$ 
```

For all choices of X :

```
S_X = ( $\text{cnt}[X] + M$ ) // 3 # Step 3: form  $(\text{cnt}[X] + M) // 3$  sets of  $X$ , noting
Play the set  $X X X$  for  $S_X$  times # both  $\text{cnt}[X]$  and  $M$  are divisible by 3
```

We will **assume step 2 & 3 are done** and focus on step 1 from now on.

General Case (21% / 12% / 32%, L = 2 / L ≤ 4 / L ≤ 9)

```
# Step 1: omitted, magical way to make cnt[X] % 3 == 0 for all X (allow negative)
```

```
M := max(0, -minX(cnt[X])) # Step 2: request decks to make cnt[X] ≥ 0 for all X
```

For all choices of X:

```
S_X = (cnt[X] + M) // 3 # Step 3: form (cnt[X] + M) // 3 sets of X, noting
```

```
Play the set X X X for S_X times # both cnt[X] and M are divisible by 3
```

Let's say you successfully form sets with $\text{cnt}'[X]$ card X

- Note that $M \leq \max(\text{cnt}'[X])$, since the initial count always nonnegative
- Intuitively - as long as each card is not played too many times, it is ok

General Case (21% / 12% / 32%, $L = 2$ / $L \leq 4$ / $L \leq 9$)

Step 1: omitted, magical way to make $\text{cnt}[X] \% 3 == 0$ for all X (allow negative)

How can we do step 1, perhaps not take the same card too many times?
There are many solutions to do this and lead to different number of decks requested - we will introduce some of them in the following slides

The **upper limit of extra decks** in each subtask:

Subtask 4 ($L = 2$): $M \leq 60000$

Subtask 5 ($L \leq 4$): $M \leq 6666$

Subtask 6 ($L \leq 9$): $M \leq 27$

Constraints

- $N \leq 60000$
- $N + M \times 3^L$ must not exceed 6×10^5

Solution 1 (Random Count) $M = O(3^{3^L})$

while cnt is not all divisible by 3:

 X, Y := any random card

 Z := the unique card that forms a set with X, Y

 play the set X Y Z

 subtract 1 from each of cnt[X], cnt[Y] and cnt[Z]

Actually - you can simply form sets randomly!

Since each $\text{cnt}[X] \% 3$ are either 0, 1 or 2, there are only 3^{3^L} states.

You can make all $\text{cnt}[X] \% 3 == 0$ by forming on average 3^{3^L} sets.

Solution 2 (Card Pair)

$$M = O(3^L)$$

while cnt is not all divisible by 3:

X, Y := any random card where $X \neq Y$, $\text{cnt}[X] \% 3 \neq 0$ and $\text{cnt}[Y] \% 3 \neq 0$

Z := the unique card that forms a set with X, Y

play the set X Y Z

subtract 1 from each of $\text{cnt}[X]$, $\text{cnt}[Y]$ and $\text{cnt}[Z]$

Surprisingly, if you pair up existing cards only, the number of decks on average requested would becomes $O(3^L)$ instead.

Note that if $\text{cnt}[Z] \% 3 \neq 0$, then total sum of $\text{cnt} \% 3$ would decrease by 3. Otherwise the total sum of $\text{cnt} \% 3$ would be unchanged. Heuristically, therefore, it would work in $M = O(3^L)$ decks!

Solution 3 (Repeat Elimination) $M = O(2^L)$

One of the intuitive ideas maybe - can we reduce the “space” of possible cards repeatedly? What if all the cards starts with A? Or with A and B only?

cnt[AA]	cnt[AB]	cnt[AC]
cnt[BA]	cnt[BB]	cnt[BC]
cnt[CA]	cnt[CB]	cnt[CC]

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	?	?
_B	?	?	?
_C	?	?	?

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	?	?
_B	?	?	?
_C	0	?	?

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	?	?
_B	?	?	?
_C	0	0	?

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	?	?
_B	?	?	?
_C	0	0	0

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	?	?
_B	?	?	0
_C	0	0	0

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	?	0
_B	?	?	0
_C	0	0	0

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	?	0
_B	0	?	0
_C	0	0	?

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	?	0
_B	0	0	0
_C	0	0	?

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	0	?
_B	0	0	0
_C	0	0	?

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	0	?
_B	0	0	0
_C	0	0	?

Solution 3 (Repeat Elimination) $M = O(2^L)$

If $\text{cnt}[_B] \% 3 \neq \text{cnt}[_C] \% 3$,
then impossible to win!

	A_	B_	C_
_A	?	0	?
_B	0	0	0
_C	0	0	0

Solution 3 (Repeat Elimination) $M = O(2^L)$

	A_	B_	C_
_A	?	0	?
_B	0	0	0
_C	0	0	0

Solution 3 (Repeat Elimination) $M = O(2^L)$

If $\text{cnt}[A_] \% 3 \neq \text{cnt}[B_] \% 3$
or $\text{cnt}[C_] \% 3 \neq \text{cnt}[B_] \% 3$,
then impossible to win!

	A_	B_	C_
_A	0	0	0
_B	0	0	0
_C	0	0	0

Solution 3 (Repeat Elimination) $M = O(2^L)$

Step 1. remove all cards $_C$ with $_A$ $_B$ $_C$

Step 2. remove all cards $C_$ with $A_$ $B_$ $C_$

Step 3. remove all cards $_B$ with $_A$ $_B$ CC

Step 4. remove all cards BA with AA BA CA

We can, in fact, generalise this to arbitrary L !
But we will need exponential no. of $C \dots C$, and
so this only works for $L \leq 4$.

	$A_$	$B_$	$C_$
$_A$	0	0	0
$_B$	0	0	0
$_C$	0	0	0

Winning Condition

Define $\text{cnt}_K[X]$ be the number of cards with the K^{th} position being X

The game can be won if and only if

$$\text{cnt}_K[A] \% 3 == \text{cnt}_K[B] \% 3 == \text{cnt}_K[C] \% 3$$

for every position K .

Winning Condition

The game can be won if and only if

$$\text{cnt}_K[A] \% 3 == \text{cnt}_K[B] \% 3 == \text{cnt}_K[C] \% 3$$

for every position K.

If any position violates this condition, we can consider that position only and we cannot even win with $L = 1$, and so the game cannot be won.
Otherwise we can apply solution 3 (repeat elimination) to win the game.

Solution 4 (Divide and Conquer) $M = O(L)$

Observation 4. Suppose we treat A as 0, B as 1 and C as 2. Then the game can be won iff the sum of each position are all divisible by 3 and the total number of cards is divisible by 3. That is,

$$(cnt_K[A] \times 0 + cnt_K[B] \times 1 + cnt_K[C] \times 2) \% 3 == 0$$

For each K.

In fact, this is equivalent to

$$cnt_K[A] \% 3 == cnt_K[B] \% 3 == cnt_K[C] \% 3$$

Since $cnt_K[A] + cnt_K[B] + cnt_K[C] = N$ is divisible by 3!

Solution 4 (Divide and Conquer) $M = O(L)$

Another interpretation: If we treat each card as a ternary number and defines **Ternary XOR**, then the game can be won iff the ternary XOR (SUM % 3) of every cards is 0, and the number of cards is divisible by 3!

Card X	A	B	A	B	C
Card Y	A	B	C	C	B
Card Z	A	B	B	A	A

X	0	1	0	1	2
Y	0	1	2	2	1
Z	0	1	1	0	0
SUM % 3	0	0	0	0	0

All 0 → solvable!

Solution 4 (Divide and Conquer) $M = O(L)$

```
def solve(L, prefix, cnt): # cnt is the frequency array of cards
    if L == 1:
        # Base Case: solve directly and returns
        # TODO: make each of cnt[3L-1*i..3L-1*(i+1)-1] solvable
        for i from 0 to 2: # Divide-and-Conquer
            solve(L - 1, prefix + ('A' + i), cnt[3L-1*i..3L-1*(i+1)-1])
```

Intuitively, we can split the cards into three piles according to their first letter. If we somehow make each of the piles solvable, then we can solve recursively.

Solution 4 (Divide and Conquer) $M = O(L)$

Consider the following case. After splitting the piles, the piles are not solvable.

Card 1	A	B	C
Card 2	A	B	C
Card 3	B	B	C
Card 4	B	A	C
Card 5	C	C	C
Card 6	C	B	C
Sum % 3	0	0	0

Card 1	0	1	2
Card 2	0	1	2
SUM % 3	0	2	1

Card 3	1	1	2
Card 4	1	0	2
SUM % 3	2	1	1

All 0 → solvable!

Card 5	2	2	2
Card 6	2	1	2
SUM % 3	1	0	1

Not all 0 → not solvable :(

Solution 4 (Divide and Conquer) $M = O(L)$

We can “remove” one card into each pile, then each pile becomes solvable!

Notice that the three cards removed must form a valid set.

Don't forget that card count can actually go negative.

All 0 → solvable!

Card 1	0	1	2
Card 2	0	1	2
Removed Card X	-0	-2	-1
SUM % 3	0	0	0

Card 3	1	1	2
Card 4	1	0	2
Removed Card Y	-2	-1	-1
SUM % 3	0	0	0

Removed Card X	0	2	1
Removed Card Y	2	1	1
Removed Card Z	1	0	1
SUM % 3	0	0	0

Card 5	2	2	2
Card 6	2	1	2
Removed Card Z	-1	-0	-1
SUM % 3	0	0	0

Solution 4 (Divide and Conquer) $M = O(L)$

To fix the issue where the number of cards not a multiple of 3, you can simply take away cards of form XAA...AA, since it is 0 if seen in ternary.

For each layer of the divide-and-conquer, we take away the same card at most 3 times. Therefore, each card is taken away at most $3(L - 1)$ times in total, sufficient for full.

Fact: The bound of $3(L - 1)$ is very loose, and you can optimise this easily with some tricks. Can you think of any?

Solution 5 (Wormhole Folding) $M = O(L)$

Notice that if we remove all cards starts with B or C, that is just the case of $L - 1$.

Therefore, by requesting several decks and make $\text{cnt}[B_] = \text{cnt}[C_]$, we can pair up cards of form $B_$ and of form $C_$ randomly. Only cards of form $A_$ remains, and so we can simply repeat the process!

Heuristically, this passes $M \leq 3L$ quite easily.

Remarks

- Constructive in general: If you have no idea how to proceed, think what you can do first, then try to reduce the task to what you can do.
- Think before you implement: Always find generic ways to avoid handling cases, and reuse written utility functions. Some implementation method might be much easier than the other (e.g. cards vs frequency array).
- Unsolved Question: Is there a deterministic solution that involves constant number of extra decks for arbitrary L ? Feel free to talk to me if you solve this :)