
S263 - Set

S263 - Set
Daniel Hsieh {QwertyPi}

2026-02-14

S263 - Set

Background

Problem Idea by QwertyPi
Preparation by QwertyPi, firewater, WongChun1234

Inspired by the senior heat question that inspired by the game SET

2

Solution: (a + b + c) % 3 == 0

S263 - Set

Notations

● Card: L features, each 3 possibilities
○ encoded by a length-L ABC string

● Deck: consists of each of the 3K unique cards
● Set: a collection of 3 cards, each feature either

all same or all different

3

Complete Deck of L = 2

Valid Sets

S263 - Set

Problem Restatement

Given N (≤ 60000) cards, each of L (≤ 9) features on a table.
Partition the cards into valid sets by adding complete decks onto the table.

4

It is guaranteed that the game can be won in all the test cases.
● A simple counterexample is A A B - it is not solvable no matter how many decks you added
● In all the testcases ≠ Over all the possibilities

You cannot add too many complete decks.
● Total number of cards = N + M × 3L must not exceed 6 × 105, M the number of decks added
● Mostly affect the last subtask

S263 - Set

Subtasks

For all cases: 3 ≤ N ≤ 60000, 1 ≤ L ≤ 9

5

Subtask Score L Additional Constraints

1 7 ≤ 9 Given cards form a complete deck

2 12 = 1 /

3 16
≤ 2

Exactly one card starts with B / C

4 21 /

5 12 ≤ 4 /

6 32 ≤ 9 /

S263 - Set

Statistics

100 points 0 + 0 + 0 + 1 = 1
 68 points 0 + 0 + 0 + 1 = 1
 56 points 0 + 0 + 1 + 2 = 3
 35 points 0 + 1 + 2 + 2 = 5
 28 points 0 + 0 + 1 + 1 = 2
 19 points 7 + 11 + 11 + 3 = 32
 12 points 0 + 3 + 3 + 0 = 6
 7 points 0 + 1 + 1 + 0 = 2
 0 points 10 + 8 + 0 + 0 = 18

6

First and Only Solve by
dbsculver0412 at 2h 35m 15s.

S263 - Set

Subtask 1 (7%, Given cards form a deck)

Note that the cards XA, XB, XC forms a set where X is a string of length L - 1.

Since every card appears exactly once, we can form all sets by looping
through all possibilities of X.

How can we do that?
Method 1: Use recursion to enumerate
Method 2: Simply input and sort the cards

Number of extra decks: M = 0

7

S263 - Set

Subtask 2 (12%, L = 1)

From now on, we denote cnt[X] be the number of appearance of the card X.

Observation 1. When L = 1, the game can be won if and only if
cnt[A] % 3 = cnt[B] % 3 = cnt[C] % 3

8

What if say cnt[A] % 3 ≠ cnt[B] % 3 initially? Observe that if we
⦁ form a set of X X X (X = A, B, C): none of cnt[X] % 3 is changed
⦁ form a set of A B C: all cnt[X] % 3 change to (cnt[X] - 1) % 3
⦁ request a deck of A B C: all cnt[X] % 3 change to (cnt[X] + 1) % 3

Therefore, cnt[A] % 3 ≠ cnt[B] % 3 still holds no matter what
Which means cnt[A] and cnt[B] cannot both be 0!

S263 - Set

Subtask 2 (12%, L = 1)

From now on, we denote cnt[X] be the number of appearance of the card X.

Observation 1. When L = 1, the game can be won if and only if
cnt[A] % 3 = cnt[B] % 3 = cnt[C] % 3

9

It is guaranteed that the game can be won, so we can assume this condition.
The game can be won by forming
⦁ (cnt[X] // 3) sets of X X X where X = A, B, C
⦁ (cnt[A] % 3) sets of A B C

Number of extra decks: M = 0

S263 - Set

Subtask 3 (16%, L = 2, Exactly one card starts with B / C)

Observation 2. Given any two cards X and Y, we can find the unique third
card Z such that X Y Z forms a set.

10

Card X A B A B C

Card Y A B C C B

Card Z ? ? ? ? ?

S263 - Set

Subtask 3 (16%, L = 2, Exactly one card starts with B / C)

11

Observation 2. Given any two cards X and Y, we can find the unique third
card Z such that X Y Z forms a set.

You can compute that position by position (directly from definition):
● Two equal chars then keep it
● Two different chars then pick the third one

Card X A B A B C

Card Y A B C C B

Card Z A B B A A

S263 - Set

Subtask 3 (16%, L = 2, Exactly one card starts with B / C)

There is only one card starts with B / C, say BY and CZ.
Therefore, we can find the third card AX where AX BY CZ forms a set.

12

Case I If cnt[AX] > 0, then after playing the set AX BY CZ, we are left with all
cards start with A - that means we can simply reuse the algorithm for L = 1!

Case II What if cnt[AX] = 0? We can simply request a deck and play the sets
BA BB BC and CA CB CC - then we can proceed exactly as Case I!

Number of extra decks: M = 1

S263 - Set

General Case (21% / 12% / 32%, L = 2 / L ≤ 4 / L ≤ 9)

From now on, our target would be the general case.

As you can see from subtask 3, one of the tricky points is: how to use all the
cards exactly and avoid the card count going to the negative?

13

Observation 3. We can actually ignore whether the card count goes to the
negative, and just make all the cnt[X] divisible by 3 for all card X. We then fix
the negative counts by adding decks and form sets of identical cards.

S263 - Set

General Case (21% / 12% / 32%, L = 2 / L ≤ 4 / L ≤ 9)

Step 1: omitted, magical way to make cnt[X] % 3 == 0 for all X (allow negative)
M := max(0, -minX(cnt[X])) # Step 2: request decks to make cnt[X] ≥ 0 for all X
For all choices of X:

S_X = (cnt[X] + M) // 3 # Step 3: form (cnt[X] + M) // 3 sets of X, noting
Play the set X X X for S_X times # both cnt[X] and M are divisible by 3

14

Observation 3. We can actually ignore whether the card count goes to the
negative, and just make all the cnt[X] divisible by 3 for all card X. We then fix
the negative counts by adding decks and form sets of identical cards.

We will assume step 2 & 3 are done and focus on step 1 from now on.

S263 - Set

General Case (21% / 12% / 32%, L = 2 / L ≤ 4 / L ≤ 9)

15

Step 1: omitted, magical way to make cnt[X] % 3 == 0 for all X (allow negative)
M := max(0, -minX(cnt[X])) # Step 2: request decks to make cnt[X] ≥ 0 for all X
For all choices of X:

S_X = (cnt[X] + M) // 3 # Step 3: form (cnt[X] + M) // 3 sets of X, noting
Play the set X X X for S_X times # both cnt[X] and M are divisible by 3

Let’s say you successfully form sets with cnt’[X] card X
● Note that M ≤ max(cnt’[X]), since the initial count always nonnegative
● Intuitively - as long as each card is not played too many times, it is ok

S263 - Set

General Case (21% / 12% / 32%, L = 2 / L ≤ 4 / L ≤ 9)

Step 1: omitted, magical way to make cnt[X] % 3 == 0 for all X (allow negative)

How can we do step 1, perhaps not take the same card too many times?
There are many solutions to do this and lead to different number of decks
requested - we will introduce some of them in the following slides

The upper limit of extra decks in each subtask:
Subtask 4 (L = 2): M ≤ 60000
Subtask 5 (L ≤ 4): M ≤ 6666
Subtask 6 (L ≤ 9): M ≤ 27

16

Constraints
● N ≤ 60000
● N + M × 3L must not exceed 6 × 105

S263 - Set

Solution 1 (Random Count) M = O(33^L)

while cnt is not all divisible by 3:
X, Y := any random card
Z := the unique card that forms a set with X, Y
play the set X Y Z
subtract 1 from each of cnt[X], cnt[Y] and cnt[Z]

Actually - you can simply form sets randomly!
Since each cnt[X] % 3 are either 0, 1 or 2, there are only 33^L states.
You can make all cnt[X] % 3 == 0 by forming on average 33^L sets.

17

S263 - Set

Solution 2 (Card Pair) M = O(3L)

while cnt is not all divisible by 3:
X, Y := any random card where X ≠ Y, cnt[X] % 3 ≠ 0 and cnt[Y] % 3 ≠ 0
Z := the unique card that forms a set with X, Y
play the set X Y Z
subtract 1 from each of cnt[X], cnt[Y] and cnt[Z]

Surprisingly, if you pair up existing cards only, the number of decks on average
requested would becomes O(3L) instead.
Note that if cnt[Z] % 3 ≠ 0, then total sum of cnt % 3 would decrease by 3. Otherwise
the total sum of cnt % 3 would be unchanged. Heuristically, therefore, it would work in
M = O(3L) decks!

18

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

One of the intuitive ideas maybe - can we reduce the “space” of possible cards
repeatedly? What if all the cards starts with A? Or with A and B only?

19

cnt[AA] cnt[AB] cnt[AC]

cnt[BA] cnt[BB] cnt[BC]

cnt[CA] cnt[CB] cnt[CC]

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

20

A_ B_ C_

_A ? ? ?

_B ? ? ?

_C ? ? ?

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

21

A_ B_ C_

_A ? ? ?

_B ? ? ?

_C 0 ? ?

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

22

A_ B_ C_

_A ? ? ?

_B ? ? ?

_C 0 0 ?

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

23

A_ B_ C_

_A ? ? ?

_B ? ? ?

_C 0 0 0

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

24

A_ B_ C_

_A ? ? ?

_B ? ? 0

_C 0 0 0

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

25

A_ B_ C_

_A ? ? 0

_B ? ? 0

_C 0 0 0

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

26

A_ B_ C_

_A ? ? 0

_B 0 ? 0

_C 0 0 ?

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

27

A_ B_ C_

_A ? ? 0

_B 0 0 0

_C 0 0 ?

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

28

A_ B_ C_

_A ? 0 ?

_B 0 0 0

_C 0 0 ?

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

29

A_ B_ C_

_A ? 0 ?

_B 0 0 0

_C 0 0 ?

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

30

A_ B_ C_

_A ? 0 ?

_B 0 0 0

_C 0 0 0

If cnt[_B] % 3 ≠ cnt[_C] % 3,
then impossible to win!

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

31

A_ B_ C_

_A ? 0 ?

_B 0 0 0

_C 0 0 0

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

32

A_ B_ C_

_A 0 0 0

_B 0 0 0

_C 0 0 0

If cnt[A_] % 3 ≠ cnt[B_] % 3
or cnt[C_] % 3 ≠ cnt[B_] % 3,
then impossible to win!

S263 - Set

Solution 3 (Repeat Elimination) M = O(2L)

33

A_ B_ C_

_A 0 0 0

_B 0 0 0

_C 0 0 0

Step 1. remove all cards _C with _A _B _C
Step 2. remove all cards C_ with A_ B_ C_
Step 3. remove all cards _B with _A _B CC
Step 4. remove all cards BA with AA BA CA

We can, in fact, generalise this to arbitrary L!
But we will need exponential no. of C...C, and
so this only works for L ≤ 4.

S263 - Set

Winning Condition

Define cntK[X] be the number of cards with the Kth position being X

The game can be won if and only if

cntK[A] % 3 == cntK[B] % 3 == cntK[C] % 3

for every position K.

34

S263 - Set

Winning Condition

The game can be won if and only if

cntK[A] % 3 == cntK[B] % 3 == cntK[C] % 3

for every position K.

If any position violates this condition, we can consider that position only and
we cannot even win with L = 1, and so the game cannot be won.
Otherwise we can apply solution 3 (repeat elimination) to win the game.

35

S263 - Set

Solution 4 (Divide and Conquer) M = O(L)

Observation 4. Suppose we treat A as 0, B as 1 and C as 2. Then the game can
be won iff the sum of each position are all divisible by 3 and the total number
of cards is divisible by 3. That is,

(cntK[A] × 0 + cntK[B] × 1 + cntK[C] × 2) % 3 == 0
For each K.

In fact, this is equivalent to
cntK[A] % 3 == cntK[B] % 3 == cntK[C] % 3

Since cntK[A] + cntK[B] + cntK[C] = N is divisible by 3!

36

S263 - Set

Solution 4 (Divide and Conquer) M = O(L)

Another interpretation: If we treat each card as a ternary number and defines
Ternary XOR, then the game can be won iff the ternary XOR (SUM % 3) of
every cards is 0, and the number of cards is divisible by 3!

37

Card X A B A B C

Card Y A B C C B

Card Z A B B A A

X 0 1 0 1 2

Y 0 1 2 2 1

Z 0 1 1 0 0

SUM % 3 0 0 0 0 0

All 0 → solvable!

S263 - Set

Solution 4 (Divide and Conquer) M = O(L)

def solve(L, prefix, cnt): # cnt is the frequency array of cards
if L == 1:

Base Case: solve directly and returns
TODO: make each of cnt[3L-1*i..3L-1*(i+1)-1] solvable
for i from 0 to 2: # Divide-and-Conquer

solve(L - 1, prefix + ('A' + i), cnt[3L-1*i..3L-1*(i+1)-1])

Intuitively, we can split the cards into three piles according to their first letter. If
we somehow make each of the piles solvable, then we can solve recursively.

38

S263 - Set

Solution 4 (Divide and Conquer) M = O(L)

Consider the following case. After splitting the piles, the piles are not solvable.

39

Card 1 A B C

Card 2 A B C

Card 3 B B C

Card 4 B A C

Card 5 C C C

Card 6 C B C

Sum % 3 0 0 0 All 0 → solvable!

Not all 0 → not solvable :(

Card 1 0 1 2

Card 2 0 1 2

SUM % 3 0 2 1

Card 3 1 1 2

Card 4 1 0 2

SUM % 3 2 1 1

Card 5 2 2 2

Card 6 2 1 2

SUM % 3 1 0 1

S263 - Set

Solution 4 (Divide and Conquer) M = O(L)

We can “remove” one card into
each pile, then each pile
becomes solvable!

Notice that the three cards
removed must form a valid set.

Don’t forget that card count
can actually go negative.

40

Card 1 0 1 2

Card 2 0 1 2

Removed Card X -0 -2 -1

SUM % 3 0 0 0

All 0 → solvable!

Card 3 1 1 2

Card 4 1 0 2

Removed Card Y -2 -1 -1

SUM % 3 0 0 0

Card 5 2 2 2

Card 6 2 1 2

Removed Card Z -1 -0 -1

SUM % 3 0 0 0

Removed Card X 0 2 1

Removed Card Y 2 1 1

Removed Card Z 1 0 1

SUM % 3 0 0 0

S263 - Set

Solution 4 (Divide and Conquer) M = O(L)

To fix the issue where the number of cards not a multiple of 3, you can simply
take away cards of form XAA...AA, since it is 0 if seen in ternary.

For each layer of the divide-and-conquer, we take away the same card at
most 3 times. Therefore, each card is taken away at most 3(L - 1) times in
total, sufficient for full.

Fact: The bound of 3(L - 1) is very loose, and you can optimise this easily with
some tricks. Can you think of any?

41

S263 - Set

Solution 5 (Wormhole Folding) M = O(L)

Notice that if we remove all cards starts with B or C, that is just the case of L - 1.

Therefore, by requesting several decks and make cnt[B_] = cnt[C_], we can pair
up cards of form B_ and of form C_ randomly. Only cards of form A_ remains, and so
we can simply repeat the process!

Heuristically, this passes M ≤ 3L quite easily.

42

S263 - Set

Remarks

● Constructive in general: If you have no idea how to proceed, think what
you can do first, then try to reduce the task to what you can do.

● Think before you implement: Always find generic ways to avoid handling
cases, and reuse written utility functions. Some implementation method
might be much easier than the other (e.g. cards vs frequency array).

● Unsolved Question: Is there a deterministic solution that involves constant
number of extra decks for arbitrary L? Feel free to talk to me if you solve
this :)

43

