
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S262 ‑ Even the Rhythm
Isaac Wong {WongChun1234}

2026-02-14



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 2

Table of Contents

1 The Problem

2 Subtask 1-3: Special Cases

3 Subtask 4-5: General Ideas

4 Subtask 7-8: Full Solution



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 3

Background

Problem Idea by happypotato
Preparation by happypotato, QwertyPi, snowysecret
Presentation by WongChun1234



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 4

Problem Restatement

• You are given N integers A1, A2, . . . , AN and integer K.
• Find integers X1, X2, . . . , XN satisfying the following:

• Xi is a factor of Ai for all 1 ≤ i ≤ N
• Note count sum(Ai ÷Xi) ≤ K
• Under the above conditions,minimise the instability maxXi −minXi.

• If there are multiple constructions, output any.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 5

Statistics

4 12 29 44 47 58 73 86 100
0

10

20

30

14

32

11

2 1

6 6 5 6

Score

Fr
eq

ue
nc

y

First solved byWYK23F32 (Xu Adam) at 31m 22s.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 6

Subtasks

For all cases: 3 ≤ N ≤ 2× 105, 1 ≤ K ≤ 1011, 1 ≤ Ai ≤ 5× 105, N ≤ K ≤ sum(Ai).

Subtask Points Constraints
1 4 N = 2, A1 = 1, A2 = 2

2 8 N = 2, A1 = 1

3 17 N ≤ 2000, Ai ≤ 2000, A1 ≤ A2 ≤ · · · ≤ AN , Ai is prime
4 18 N ≤ 100, Ai ≤ 100

5 11 N ≤ 2000, Ai ≤ 2000

6 15 N ≤ 5× 104, Ai ≤ 105, A1 = 1

7 13 N ≤ 5× 104, Ai ≤ 105

8 14 No additional constraints



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 7

Table of Contents

1 The Problem

2 Subtask 1-3: Special Cases

3 Subtask 4-5: General Ideas

4 Subtask 7-8: Full Solution



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 8

Subtask 1 (4%): N = 2, A1 = 1, A2 = 2

Since Xi must be a factor of Ai, X1 = 1 and X2 = 1 or 2.

• If K ≥ 3, we can take X2 = 1 with instability 0.
• If K = 2, we have to take X2 = 2 with instability 1.

Expected score: 4



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 9

Subtask 2 (8%): N = 2, A1 = 1

Now, there can be a lot of options for X2.

We can brute over the value of X2, then check if it satisfies the conditions.

Expected score: 12



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 10

Subtask 3 (17%): N ≤ 2000, Ai ≤ 2000, Ai is sorted, Ai is prime

For each i, Xi = 1 or Ai.

Now, we make an observation:

Observation. If there are two distinct sequences X with the same instability, picking
the one with less notes is always not worse. (In other words, you will not prefer the
one with more notes in any case.)

In this subtask, observe that if we set Xi = Ai, then it is best for us to set Xj = Aj for
all 1 ≤ j ≤ i. (Be reminded that Ai is sorted in the constraints.)

This is because if we pick Xj = Aj , the instability doesn’t change and the note count
decreases.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 11

Subtask 3 (17%): N ≤ 2000, Ai ≤ 2000, Ai is sorted, Ai is prime

With that, we can simply brute over the prefix p from 0 to N , then take:

• Xi = Ai if i ≤ p

• Xi = 1 if i > p

And then check all N + 1 constructions of X naively in O(N) time.

Time complexity: O(N2)

Expected score: 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 12

Table of Contents

1 The Problem

2 Subtask 1-3: Special Cases

3 Subtask 4-5: General Ideas

4 Subtask 7-8: Full Solution



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 13

Subtask 4 (18%): N ≤ 100, Ai ≤ 100

Consider brute forcing over the value of maxXi. Denote this value as M .

We make another observation:

Observation. After fixing a maximum value M , for each i, you will take the
maximum Xi ≤ M that is a factor of Ai.

Proof. If you can take a higher Xi, Ai ÷Xi decreases. Also, maxXi doesn’t change
(since we defined it to be M ), and minXi won’t decrease.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 14

Subtask 4 (18%): N ≤ 100, Ai ≤ 100

Then, we have an O(N × (maxAi)
2) solution:

• Brute overM from 0 to maxAi.
• For each M , for every i, find the highest valid Xi ≤ M in O(maxAi) time.
• Then, naively check each construction in O(N) time.

Time complexity: O(N3)

Expected score: 47



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 15

Subtask 5 (11%): N ≤ 2000, Ai ≤ 2000

Seems like we need a quadratic solution instead of a cubic solution now. Let’s revisit
our previous solution:

• Brute over M from 0 to maxAi.
• For each M , for every i, find the highest valid Xi ≤ M in O(maxAi) time.
• Then, naively check each construction in O(N) time.

Can we do some precomputation to speed up the process?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 16

Subtask 5 (11%): N ≤ 2000, Ai ≤ 2000

Seems like we need a quadratic solution instead of a cubic solution now. Let’s revisit
our previous solution:

• Brute over M from 0 to maxAi.
• For each M , for every i, find the highest valid Xi ≤ M in O(maxAi) time.
• Then, naively check each construction in O(N) time.

Can we do some precomputation to speed up the process? Yes!

For each i, we can find the largest factor ≤ M for all M in O(maxAi) time. It will be
something like f[i][M] = (A[i] % M == 0 ? M : f[i][M + 1]).

Alternatively, store all factors of Ai and use binary search every time.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 17

Subtask 5 (11%): N ≤ 2000, Ai ≤ 2000

Now, our solution becomes this:

• For every i, precompute factors / previous factor in O(N ×maxAi) time.
• Brute over M from 0 to maxAi.
• For each M , for every i, find the highest valid Xi ≤ M in O(logAi) / O(1) time.
• Then, naively check each construction in O(N) time.

Time complexity: O(N ×maxAi) / O(N ×maxAi logmaxAi)

Expected score: 58



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 18

Subtask 6 (15%): N ≤ 5× 104, Ai ≤ 105, A1 = 1

We need a sub-quadratic solution now.

Looking at the constraints, we see A1 = 1. What does this do?

Recall from earlier subtasks, A1 = 1 implies X1 = 1, which implies minXi = 1.

Can we use this to speed up our previous solution?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 19

Subtask 6 (15%): N ≤ 5× 104, Ai ≤ 105, A1 = 1

Let’s look at our previous solution:

• For every i, precompute factors / previous factor in O(N ×maxAi) time.
• Brute over M from 0 to maxAi.
• For each M , for every i, find the highest valid Xi ≤ M in O(logAi) / O(1) time.
• Then, naively check each construction in O(N) time.

Notice that the instability of a constuction is simply M − 1 now.

This means we will take the smallest M possible. Then we can binary search on M

instead of brute forcing over it!

Let’s change our solution accordingly.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 20

Subtask 6 (15%): N ≤ 5× 104, Ai ≤ 105, A1 = 1

Let’s change our solution accordingly:

• For every i, precompute factors in O(maxAi logmaxAi) time with Sieve.
• Binary search on M from 0 to maxAi.
• For each M , for every i, find the highest valid Xi ≤ M in O(logAi) time.
• Then, naively check each construction in O(N) time.

Note that this solution is not correct in general; it is only correct when minXi = 1.

Time complexity: O(N × log2 maxAi)

Expected score: 73



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 21

Table of Contents

1 The Problem

2 Subtask 1-3: Special Cases

3 Subtask 4-5: General Ideas

4 Subtask 7-8: Full Solution



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 22

Subtask 7 (13%): N ≤ 5× 104, Ai ≤ 105

Again, we need a sub-quadratic solution. This time, the binary search idea doesn’t
work.

Let’s revisit our solution from subtask 5:

• For every i, precompute factors / previous factor in O(N ×maxAi) time.
• Brute over M from 0 to maxAi.
• For each M , for every i, find the highest valid Xi ≤ M in O(logAi) / O(1) time.
• Then, naively check each construction in O(N) time.

Actually, if we think about it, the distinct possible values of Xi is only N × τ(Ai), where
τ(Ai) represents the number of factors of Ai.

Maybe we can do some kind of sliding window algorithm on factors...?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 23

Subtask 7 (13%): N ≤ 5× 104, Ai ≤ 105

Maybe we can do some kind of sliding window algorithm on factors...? Let’s try it!

• Build a list of pairs (d, i) where d is a factor of Ai.
• Sort all pairs by factor value d.
• Maintain a sliding window [l, r] on this sorted list (two pointers).

• The window corresponds to choosing minXi and maxXi from factors in this range.

• Pick the largest Xi inside the window for each i. Dynamically maintain the note
count when sliding.

Time complexity: O(F logF ), where F =
∑

τ(Ai). Maximum of τ(i) for 1 ≤ i ≤ 105 is
128, so the solution passes this subtask.

Expected score: 86



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 24

Subtask 8 (14%): No Additional Constraints (N ≤ 2× 105, Ai ≤ 5× 105)

Now, the previous solution is too slow. Let’s try to optimise it!

Optimisation 1. Sorting is the bottleneck here, can we avoid the sorting?

Since the elements are up to 5× 105 only, we can do so by performing counting sort.

In practice, we will maintain a vector of is for every d, and do two pointer on the ds.

This optimisation saves a log in our solution.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 25

Subtask 8 (14%): No Additional Constraints (N ≤ 2× 105, Ai ≤ 5× 105)

Now, the previous solution is too slow. Let’s try to optimise it!

Optimisation 2. Notice that there are only a few values of Ai that achieves the
maximum τ(Ai). (Maximum of τ(i) for 1 ≤ i ≤ 5× 105 is 200.)

What if we de-duplicate elements and consider them in batch? The number of
elements will drop from N × τ(Ai) to something closer to N logAi.

If only one of the two optimisations is applied, constant optimisation might be
needed to get AC.

Time complexity: O(N × τ(Ai)) / O(N × log2 Ai) / O(N × logAi)

Expected score: 100



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S262 - Even the Rhythm | 26

Implementation Details

In all the solutions above, it might seem a bit annoying to find a construction. Actually,
there is a clean way to do so!

As established before, if we fix some maxXi = M , you can easily recover the
construction of X.

Therefore, you don’t have to store the current X every time you find a better solution.
you can simply store maxXi, and recompute it when outputting the answer.


	The Problem
	Subtask 1-3: Special Cases
	Subtask 4-5: General Ideas
	Subtask 7-8: Full Solution

