

J264 - Shy Students

Ethen Yuen {ethening}

2026-02-14

Table of Contents

- 1 The Problem
- 2 Key Observations
- 3 Building the Seating Plan
- 4 Optimal Construction
- 5 Full Solution

Background

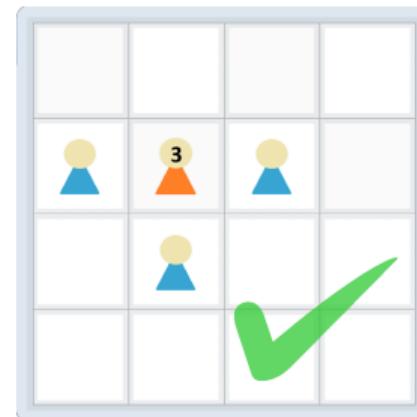
Problem Idea by ethening

Preparation by bedrockfake, ITO

Presentation Slides by ethening, ITO

Task: Design a seating plan for N shy students in a grid.

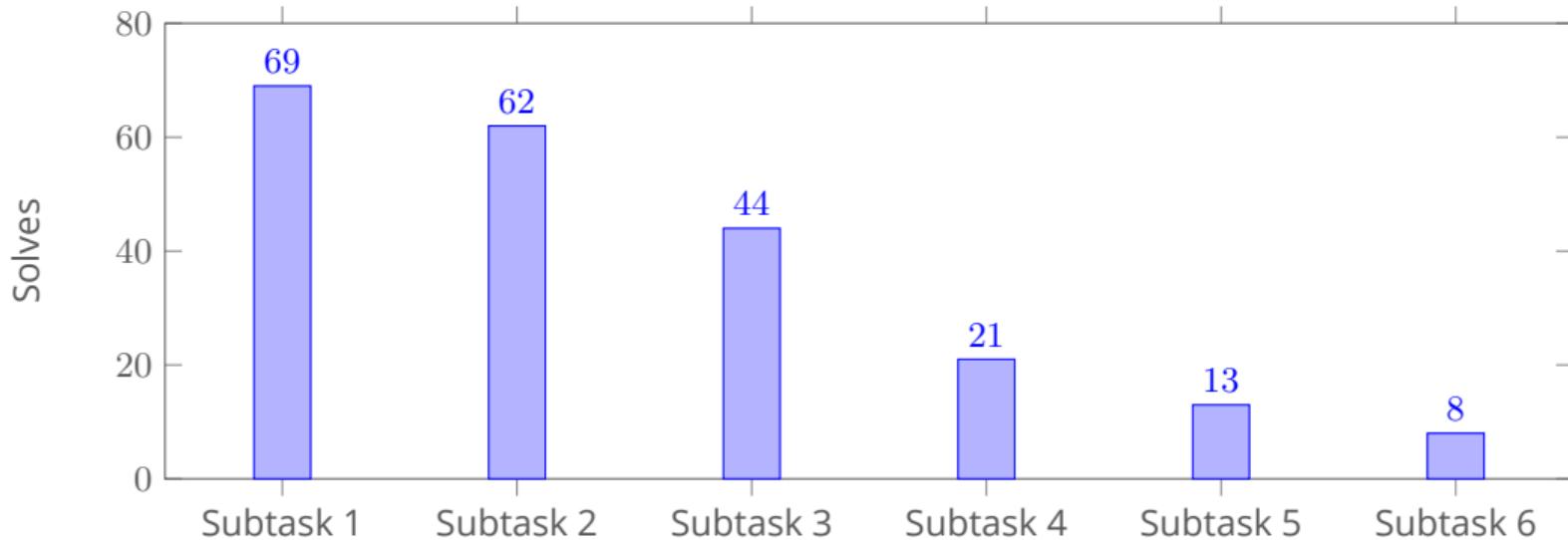
- Each student has shyness $s \in \{1, 2, 3, 4\}$.
- Condition: A student with shyness s can have at most s occupied neighbours.



Problem Statement

- **Input:** N_1, N_2, N_3, N_4 (counts of students with shyness 1, 2, 3, 4).
- **Output:** A valid grid configuration (dimensions $R \times C$) or **Impossible**.
- **Constraints:**
 - All students must form a single **connected component**.
 - For every student with shyness s , degree $\leq s$.
 - $N = \sum N_i \leq 4000$.

Statistics



First solved by **wy_24215** (Yang Chun Kit) at **57m**.

Subtasks

Subtask	Points	Constraints
1	9	$N_1 = 0$
2	8	$N_1 \leq 2$
3	17	$N_2 = N_3 = 0$
4	19	$N_3 = 0$
5	20	$N_2 = 0$
6	27	No additional constraints

Table of Contents

- 1 The Problem
- 2 Key Observations
- 3 Building the Seating Plan
- 4 Optimal Construction
- 5 Full Solution

Definitions

Degree

Number of occupied neighbours a cell touches (up, down, left, right).

Constraint: $\text{degree} \leq \text{shyness } s$.

The **4** has 3 neighbours
 $\text{degree} = 3 \leq 4$ ✓

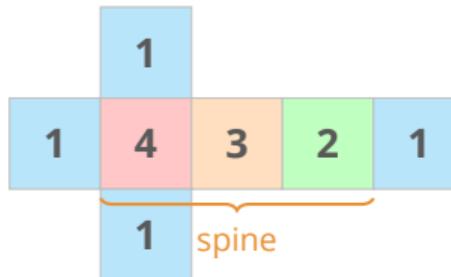
The **1** has 3 neighbours
 $\text{degree} = 3 > 1$ ✗

Observation 1: Leaves

Key Property

Shyness-1 students can have at most 1 neighbour.
→ They must be **leaves** in the connectivity graph.

- Two shyness-1 students **cannot be adjacent** (unless $N = 2$). If adjacent, they use up their only connection. They cannot connect to the rest of the class!
- **Structure:** A connected **spine** of non-1 students ($s \geq 2$), with 1s attached as leaves.

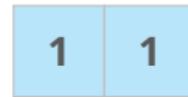


Edge Case: Only Shyness-1 Students

When $N_2 = N_3 = N_4 = 0$:

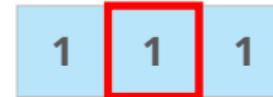
$$N_1 = 1$$

$$\text{deg} = 0 \leq 1 \checkmark$$



$$N_1 = 2$$

$$\text{deg} = 1 \leq 1 \checkmark$$



$$N_1 \geq 3$$

$$\text{deg} = 2 > 1 \times$$

- Possible iff $N_1 \leq 2$. Output a single row: 1 or 11.
- From now on, we assume $N_2 + N_3 + N_4 \geq 1$ (there is a spine).

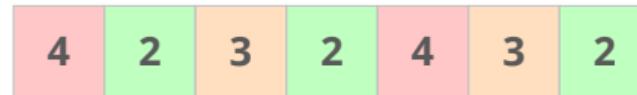
Table of Contents

- 1 The Problem
- 2 Key Observations
- 3 Building the Seating Plan
- 4 Optimal Construction
- 5 Full Solution

Subtask 1: $N_1 = 0$

Idea

Only students with shyness ≥ 2 . Simply arrange them in a line!



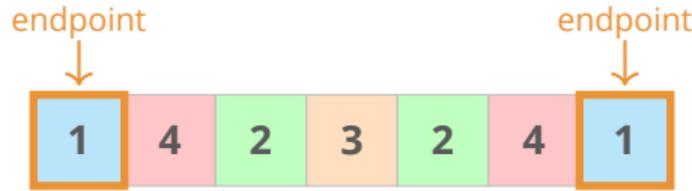
- Interior degree = 2. Endpoint degree = 1.
- All $s \geq 2$, so $\text{degree} \leq s$ is always satisfied.
- This line forms the **spine**.

Expected Score: 9

Subtask 2: $N_1 \leq 2$

Idea

Attach the few shyness-1 students to the **endpoints** of the spine.



- Each endpoint 1 has degree = 1 ≤ 1 . ✓
- The spine endpoints now have one extra neighbour, but shyness ≥ 2 handles it. ✓

Expected Score: 17

Subtask 3: $N_2 = N_3 = 0$

There are only 1s and 4s.

With many shyness-1 students, endpoints are not enough.

Construction

3-Row Grid. Spine in the middle row. Attach 1s **above and below**.

	1		1		1	
1	4	4	4	4	4	1
	1		1			

above: 1s

spine: 4s

below: 1s

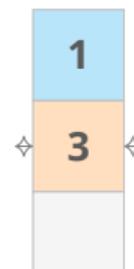
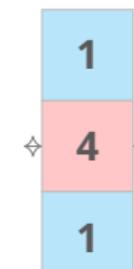
Subtask 3: $N_2 = N_3 = 0$ (cont.)

- 4s in spine each uses 2 connections for left/right.
- Has spare capacity $4 - 2 = 2$ (one above, one below).
- **Constraint:** 1s in the same row cannot be adjacent.
- **Solution:** Checkerboard pattern (skip every other column).

Expected Score: **34**

Capacity Analysis

Each spine student uses 2 connections for the spine. Remaining is **spare capacity**.



Capacity Analysis (cont.)

Theoretical maximum 1s:

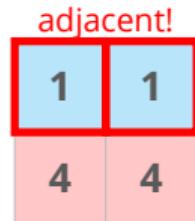
$$\underbrace{2}_{\text{endpoints}} + \underbrace{N_3 \cdot 1}_{\text{from 3s}} + \underbrace{N_4 \cdot 2}_{\text{from 4s}} = 2 + N_3 + 2N_4$$

However, adjacency constraints limit this.

Constraint: Adjacency of Leaves

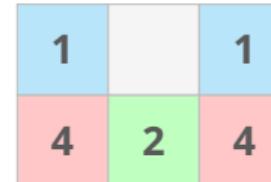
If two 1s are in the same row at consecutive columns, they connect to each other. → Degree becomes 2. **Invalid!**

Bad: 1s are adjacent



Each 1 has degree ≥ 2 . ✗

Good: gap between 1s



Each 1 has degree = 1. ✓

Implication: The order of the spine matters. High-capacity students should be separated to avoid wasting slots.

Table of Contents

- 1 The Problem
- 2 Key Observations
- 3 Building the Seating Plan
- 4 Optimal Construction
- 5 Full Solution

Subtask 4: $N_3 = 0$

Intuition

Place a low-capacity student (e.g., 2) between high-capacity students (e.g., 4). The 2 acts as a **spacer**, enforcing a gap between the 1s attached to the 4s.

Bad: 4s bunched together

1		1			
4	4	4	2	2	2
1		1			

only 4 extra 1s placed!

Good: alternate 4 and 2

1		1		1	
4	2	4	2	4	2
1		1		1	

6 extra 1s placed!

Strategy: Alternate 4s and 2s to maximise capacity.

Expected Score: **53**

Subtask 5: $N_2 = 0$

3s have spare capacity 1 (above OR below).

- **(4, 3) Pair:** 4 takes both slots. 3's slot is blocked. **Waste: 1.**
- **(3, 3) Pair:** Alternate top/bottom. **Waste: 0.**

1	
4	3
1	

1	
3	3
	1

1	
4	4
1	

(4, 3): 3 is blocked (3, 3): both used! (4, 4): 2 wasted!

Strategy: Prioritise separating 4s with 3s.

Expected Score: **73**

Waste Analysis

Waste = Theoretical Capacity - Realisable Capacity

Pair	Waste	Intuition
(4, 2)	0	Best! Perfect spacer.
(3, 3)	0	Alternate above and below.
(3, 2), (2, 2)	0	Low capacity, easy to fit.
(4, 3)	1	Okay. 1 slot blocked.
(4, 4)	2	Worst! 2 slots blocked.

Optimal Ordering Strategy

Priority

Construct the spine in this order to minimize waste:

(4, 2) → (4, 3) → Remainder.

- **Why?** Pair high-capacity (4) with spacers (2) first.
- If no 2s left, use 3s as imperfect spacers.
- Avoid (4, 4) adjacency at all costs (Waste: 2).

Table of Contents

- 1 The Problem
- 2 Key Observations
- 3 Building the Seating Plan
- 4 Optimal Construction
- 5 Full Solution

Impossibility Condition

Calculate max placeable 1s:

$$\text{Capacity} = 2 + N_3 + 2N_4 - L$$

where L is total waste from the optimal ordering.

Condition

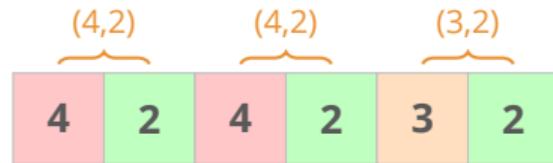
Impossible if:

- Only 1s exist and $N_1 \geq 3$.
- $N_1 > \text{Capacity}$.

Step 1: Build the Spine

Example: $N_1 = 3, N_2 = 3, N_3 = 1, N_4 = 2$.

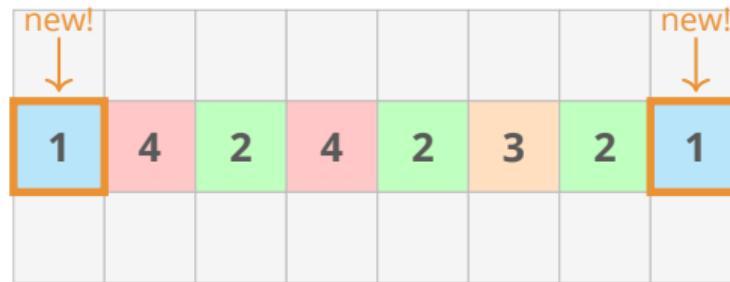
Order: $(4, 2) \rightarrow (4, 2) \rightarrow (3, 2)$.



$L = 0$. Remaining $N_1 = 3$.

Step 2: Endpoints

Place 1s at left/right ends.



Placed 2. Remaining $N_1 = 1$.

Step 3: Fill Spare Capacity

Greedy Strategy:

- Scan spine left-to-right.
- For each student with spare capacity:
- Check **above**, then **below**.
- Valid if left neighbor in that row is empty.

1	4	2	4	2	3	2	1	
1	4	2	4	2	3	2	1	
1	4	2	4	2	3	2	1	
1	4	2	4	2	3	2	1	
1	4	2	4	2	3	2	1	

Position 1 is a **4** (spare = 2).

Left cell in row 0 is empty
→ place above!

$N_1 = 0$. Done!

Algorithm Summary

- ① **Edge Case:** Only 1s? Check $N_1 \leq 2$.
- ② **Spine:** Construct using priority $(4, 2) \rightarrow (4, 3) \rightarrow \dots$
- ③ **Endpoints:** Add 1s to spine ends.
- ④ **Fill:** Add remaining 1s above/below spine where valid.
- ⑤ **Check:** If N_1 remains, Impossible.

Time Complexity: $O(N)$

Expected Score: **100**

Key Takeaways

- **Change your perspective:** The shyness-1 constraint forces a spine-and-leaf structure. Identifying this early turns the problem from "how to create a valid construction" to "how to maximize placement of 1s".
- **Subtasks as scaffolding:** The subtasks reveal the priorities of the pairings. Build your solution layer by layer, following the guidance of the subtasks.

Appendix: Proof of Optimality

We prove that the straight-line spine construction maximises the number of shyness-1 students placed.

Let $K = N_2 + N_3 + N_4$. In this appendix, assume $K \geq 1$ (the $K = 0$ case is handled separately).

Lemma 1: Degree-Budget Upper Bound

Take any valid placement. Let H be the subgraph induced by non-1 students.

- H is connected (all students are connected, and every shyness-1 student is a leaf).
- Let $m = |E(H)|$. Since H is connected on K vertices, $m \geq K - 1$.
- Total degree budget contributed by non-1 students is

$$B = 2N_2 + 3N_3 + 4N_4.$$

Every edge of H consumes 2 budget units, so at most $B - 2m$ units remain for edges from non-1 students to shyness-1 students. Therefore

$$N_1 \leq B - 2m \leq B - 2(K - 1) = 2 + N_3 + 2N_4.$$

Upper Bound: Waste from Adjacency

Not all spare capacity is realisable. For two non-1 cells that are edge-adjacent or corner-adjacent, the union of their grid neighbours has size at most 6.

Waste per pair

Two such non-1 cells with values a and b have unavoidable loss $w(a, b) = \max(0, a + b - 6)$.

Only $(4, 4) \rightarrow 2$ and $(4, 3) \rightarrow 1$ produce non-zero waste; all other pairs: 0.

Upper Bound: Waste from Adjacency

- Consider any partition of the non-1 cells into pairs of edge/corner-adjacent cells, with at most one unpaired cell.
- For each pair (a_i, b_i) , at least $w(a_i, b_i)$ capacity is lost, so total loss is at least $\sum_i w(a_i, b_i)$.
- Minimising this over all such pairings gives a universal lower bound on loss; denote it by L_{\min} .

Combining with Lemma 1:

$$N_1 \leq 2 + N_3 + 2N_4 - L_{\min}.$$

Lower Bound: Construction Achieves the Bound

The straight-line spine on a 3-row grid achieves

$$N_1 = 2 + N_3 + 2N_4 - L_{\min}.$$

- ① **Maximal spare.** The spine is a path on K non-1 cells, so it uses exactly $K - 1$ non-1 edges, hence spare budget is exactly $2 + N_3 + 2N_4$.
- ② **Exact loss.** Along this spine, loss is exactly the sum of pair losses from its adjacent pairs; with ordering $(4, 2) \rightarrow (4, 3) \rightarrow$ remainder this equals L_{\min} .
- ③ **Realisability.** Place 1s greedily in checkerboard pattern above/below the spine. No two placed 1s are adjacent, and every non-wasted slot is filled.

Hence the upper bound is met with equality, so the construction is **optimal**. □

Computing L_{\min} : Optimal Pairing

Greedy strategy to minimise total waste:

- ① **Pair 4s with 2s** (waste 0). Uses $\min(N_4, N_2)$ of each.
- ② **Pair remaining 4s with 3s** (waste 1 each).

Let $q = \min(\max(0, N_4 - N_2), N_3)$.

- ③ **Pair remaining 4s together** (waste 2 each).

Let $r = \left\lfloor \frac{\max(0, N_4 - N_2 - N_3)}{2} \right\rfloor$.

$$L_{\min} = q + 2r$$

Final Answer

Impossible $\iff N_1 > 2 + N_3 + 2N_4 - L_{\min}$.

Edge case: if $K = 0$ (only 1-students), possible iff $N_1 \leq 2$.