0 N
HF’I (’a BEEMEMLRHRE
Hong Kong Olymp iad in Informatics

J263 - Spot-Check Debugging

Daniel Hsieh {QwertyPi}
2026-02-14

HH(('Z ?%;ﬁﬁi’fiﬁszm J263 - Spot-Check Debugging | 2

Background

Problem idea by kctung
Preparation by __declspec, gasbug

(4 3 = R ER 23z g
HH@ EEENERIERE J263 - Spot-Check Debugging | 3

Hong Kong Olympiad in Informatics

Problem Restatement

e Bob needs to debug L lines of code with N buggy sections

e Each day he checks lines at offsets t, t+S, t+2S, ... (step size S)

e Once he locates a buggy line X, he correct lines X, X-1, ... until a correct
line

e The starting offsets for each day are T[1], T[2], ..., T[P], T[1], ...

e Answer Q queries: for each day D, how many lines are debugged?

HH(C). ﬁiﬁ%ﬁ@wg%%ﬁg J263 - Spot-Check Debugging | 4

ng Kong Olympiad in Informatics

Subtasks
Task Attempts Max Mean Std Dev Subtasks
J263 - Spot-Check Debugging 73 100 15.78 18.248 [10:54% 8:25 13:13 19:9 22:2 28:1

First (and only) solved by wy_24215 (Yang Chun Kit) at 2hr 59m 27s

(4 N
| "] (’a BEEREMEMILERE
Hong Kong Olympiad in Informatics

J263 - Spot-Check Debugging |

Subtask Constraints
Subtask Points Constraints
L <100
1 10 D <100
0
P=1
2 8 Ufil= Vil for 1<i<N
P=1
3 13 Viil-Ufil+1<Sfor1<i<N
4 19 P=1
5 22 N=1
6 28 No additional constraints

5

HH(é EEBWANLEHE

Subtask 1 (10%): L <100, D[Q] <100
Store correctness of every line and simulate
Complexity: O(L) per day, O(D[Q]) days

Expected score: 10 (Cumulative: 10)

J263 - Spot-Check Debugging |

6

J .
BEEREMEMILERE - . i
HH@ Hong EKEon; Olympiad inﬁlﬂnformatics J263 SPOt CheCk Debugglng | 7

Subtask 2 (8%): P = 1, U[i] = V[i]

e Buggy sections are single lines
Same starting offset every day

e Compute the number of lines that matches the only offset (mod S)
For each query day, check if enough complete cycles have passed

Complexity: O(N + Q)

Expected score: 8 (Cumulative: 18)

J .
BEEREMEMILERE - . i
HH@ Hong EKEon; Olympiad inﬁlﬂnformatics J263 SPOt CheCk Debugglng | 8

Subtask 3 (13%): P =1, V[i] - U[i] +1<S

e Small buggy section size
Same starting offset every day

e Key insight: Each section can only be debugged once
Precompute: For every section, whether it will be hit (how?) and if so, the
number of lines fixed

e Store the hit sections in an array and answer queries by indexing it

Complexity: O(N + Q)
Expected score: 21 (Cumulative: 31)

(4 3 = R ER 23z g
HH@ EEENERIERE J263 - Spot-Check Debugging | 9

Hong Kong Olympiad in Informatics

Subtask 4 (19%): P=1

e Same starting offset

e Observation: When we fix a new section, the first day we might fix any
number of lines, but from the second day onwards we only fix S lines until
we can't fix any lines in the section anymore

e E.g.5=4, T[1]=2: for the red buggy section, we fix 3 lines, then 4 lines, then
4 lines, then leave this section.

HEEEEEEEEEEE
T I I T

J263 - Spot-Check Debugging | 10

0 N
HF’I (’a BEEMEMLRHRE
Hong Kong Olympiad in Informatics

Subtask 4 (19%): P=1

Fast forwarding

Iterate on the days

Track current section index being debugged

To fast forward d days, simply progress through each section by the
previous observation until we run out of days

Complexity: O(N + Q) (won't visit the same section twice)

Expected score: 40 (Cumulative: 50)

J .
BEEREMEMILERE - . i
HH@ Hong EKEon; Olympiad inﬁlﬂnformatics J263 SPOt CheCk Debugglng | 1 1

Subtask 5 (22%): N =1 (single buggy section)

Stronger Observation: consider each P days as a cycle. The number of lines
fixed in each cycle is constant per day in cycle, except the first one.
Furthermore, except the first cycle, the total number of lines fixed is a multiple
of S.

E.g.if D[1]=2 (red), D[2]=1 (blue), S=4, then

e 1stcycle: R fixes 3 lines, B fixes 3 lines

e 2nd cycle: R fixes 1 line, B fixes 3 lines (total = 4 is a multiple of S)

J .
BEEREMEMILERE - . i
HH@ Hong EKEon; Olympiad inﬁlﬂnformatics J263 SPOt CheCk Debugglng | 12

Subtask 5 (22%): N =1 (single buggy section)

e Calculate the lines fixed for the first cycle
e Do it again for the cycles from the second one onward

e Calculate the number of full cycles and handle the ending case carefully in
O(P)

Time complexity: O(P+Q)

Expected score: 62 (Cumulative: 72)

J .
BEEREMEMILERE - . i
HH@ Hong EKEon; Olympiad inﬁlﬂnformatics J263 SPOt CheCk Debugglng | 13

Full Solution

Notation: Consider the j-th cycle (of each P days). Let the index of the section
debugged on the i-th day in the cycle be Fj[i].

E.g.Red = D[1] = 2, Blue = D[2] = 1:

o F =[1,2]
e F,=[23]

J .
BEEREMEMILERE - . i
HH@ Hong EKEong Olympiad inﬁlﬂnformatics J263 SPOt CheCk Debugglng | 14

Full Solution

We can do simulation.
e When we simulate day i in the j-th cycle, we set Fj[i] = Fj_l[i] initially, and
increase it until we hit a buggy section that needs debugging.

However, this is too slow. We can speed up by looking at two cases:

1. We debug the same section for every day in the cycle, i.e. Fj[l] = .= FJ.[P].
— Use subtask 5 to speed up in O(P).

2. We don't debug the same section. This happens at most O(N) times, since
the min(Fj)—th section will not be debugged anymore after the next cycle.

J .
BEEREMEMILERE - . i
HH@ Hong EKEon; Olympiad inﬁlﬂnformatics J263 SPOt CheCk Debugglng | 15

Full Solution

> |f we don’t debug the same section among all days in the cycle j, the
min(Fj)—th section will not be debugged anymore after the next cycle.

Why? (Proof Sketch)

e Consider the section size of the min(Fj)—th section after the j-th cycle
o Itmustbe<S
o

Otherwise, we will debug the same section in cycle j (why?)

J .
BEEREMEMILERE - . i
HH@ Hong EKEon; Olympiad inﬁlﬂnformatics J263 SPOt CheCk Debugglng | 16

Full Solution

So for each day in query, compute the respective F array by fast forwarding +
simulation.

e Fast forwarding at most O(N+Q) times, each time just O(1)
e Simulation at most O(N) times, each time amortised O(P)
e Overall time complexity: O(N*P+Q)

Expected score: 100

(4 3 = R ER 23z g
HH@ EEENERIERE J263 - Spot-Check Debugging | 17

Hong Kong Olympiad in Informatics

Implementation Note

e Since the modulo operation should be involved, it is easier to code if
indices are 0-based
e Soondayi
o starting offset = T[i%P]
o only lines j where j%S == T[i%P] are checked

