
J263 - Spot-Check Debugging

J263 - Spot-Check Debugging
Daniel Hsieh {QwertyPi}

2026-02-14

1



J263 - Spot-Check Debugging

Background

Problem idea by kctung
Preparation by __declspec, gasbug

2



J263 - Spot-Check Debugging

Problem Restatement

● Bob needs to debug L lines of code with N buggy sections
● Each day he checks lines at offsets t, t+S, t+2S, ... (step size S)
● Once he locates a buggy line X, he correct lines X, X-1, … until a correct 

line
● The starting offsets for each day are T[1], T[2], …, T[P], T[1], …
● Answer Q queries: for each day D, how many lines are debugged?

3



J263 - Spot-Check Debugging

Subtasks

First (and only) solved by wy_24215 (Yang Chun Kit) at 2hr 59m 27s

4



J263 - Spot-Check Debugging

Subtask Constraints

5

Subtask Points Constraints

1 10 L ≤ 100
DQ ≤ 100

2 8 P = 1
U[i] = V[i] for 1 ≤ i ≤ N

3 13 P = 1
V[i] - U[i] + 1 ≤ S for 1 ≤ i ≤ N

4 19 P = 1

5 22 N = 1

6 28 No additional constraints



J263 - Spot-Check Debugging

Subtask 1 (10%): L ≤ 100, D[Q] ≤ 100

Store correctness of every line and simulate

Complexity: O(L) per day, O(D[Q]) days

Expected score: 10 (Cumulative: 10)

6



J263 - Spot-Check Debugging

Subtask 2 (8%): P = 1, U[i] = V[i] 

● Buggy sections are single lines
● Same starting offset every day

● Compute the number of lines that matches the only offset (mod S)
● For each query day, check if enough complete cycles have passed

Complexity: O(N + Q)

Expected score: 8 (Cumulative: 18)

7



J263 - Spot-Check Debugging

Subtask 3 (13%): P = 1, V[i] - U[i] + 1 ≤ S

● Small buggy section size
● Same starting offset every day

● Key insight: Each section can only be debugged once
● Precompute: For every section, whether it will be hit (how?) and if so, the 

number of lines fixed
● Store the hit sections in an array and answer queries by indexing it

Complexity: O(N + Q)
Expected score: 21 (Cumulative: 31)

8



J263 - Spot-Check Debugging

Subtask 4 (19%): P = 1

● Same starting offset

● Observation: When we fix a new section, the first day we might fix any 
number of lines, but from the second day onwards we only fix S lines until 
we can’t fix any lines in the section anymore

● E.g. S=4, T[1]=2: for the red buggy section, we fix 3 lines, then 4 lines, then 
4 lines, then leave this section.

9



J263 - Spot-Check Debugging

Subtask 4 (19%): P = 1

● Fast forwarding
● Iterate on the days
● Track current section index being debugged
● To fast forward d days, simply progress through each section by the 

previous observation until we run out of days

Complexity: O(N + Q) (won’t visit the same section twice)

Expected score: 40 (Cumulative: 50)

10



J263 - Spot-Check Debugging

Subtask 5 (22%): N = 1 (single buggy section)

Stronger Observation: consider each P days as a cycle. The number of lines 
fixed in each cycle is constant per day in cycle, except the first one. 
Furthermore, except the first cycle, the total number of lines fixed is a multiple 
of S.
E.g. if D[1]=2 (red), D[2]=1 (blue), S=4, then 
● 1st cycle: R fixes 3 lines, B fixes 3 lines
● 2nd cycle: R fixes 1 line, B fixes 3 lines (total = 4 is a multiple of S)
● …

11



J263 - Spot-Check Debugging

Subtask 5 (22%): N = 1 (single buggy section)

● Calculate the lines fixed for the first cycle
● Do it again for the cycles from the second one onward
● Calculate the number of full cycles and handle the ending case carefully in 

O(P)

Time complexity: O(P+Q)

Expected score: 62 (Cumulative: 72)

12



J263 - Spot-Check Debugging

Full Solution

Notation: Consider the j-th cycle (of each P days). Let the index of the section 
debugged on the i-th day in the cycle be Fj[i]. 
E.g. Red = D[1] = 2, Blue = D[2] = 1:
● F1 = [1, 2]
● F2 = [2, 3]
● …

13



J263 - Spot-Check Debugging

Full Solution

We can do simulation. 
● When we simulate day i in the j-th cycle, we set Fj[i] := Fj-1[i] initially, and 

increase it until we hit a buggy section that needs debugging.

However, this is too slow. We can speed up by looking at two cases:
1. We debug the same section for every day in the cycle, i.e. Fj[1] = … = Fj[P].

→ Use subtask 5 to speed up in O(P). 
2. We don’t debug the same section. This happens at most O(N) times, since 

the min(Fj)-th section will not be debugged anymore after the next cycle. 

14



J263 - Spot-Check Debugging

Full Solution

> If we don’t debug the same section among all days in the cycle j, the 
min(Fj)-th section will not be debugged anymore after the next cycle. 

Why? (Proof Sketch)
● Consider the section size of the min(Fj)-th section after the j-th cycle
● It must be < S
● Otherwise, we will debug the same section in cycle j (why?)

15



J263 - Spot-Check Debugging

Full Solution

So for each day in query, compute the respective F array by fast forwarding + 
simulation.
● Fast forwarding at most O(N+Q) times, each time just O(1)
● Simulation at most O(N) times, each time amortised O(P)
● Overall time complexity: O(N*P+Q)

Expected score: 100

16



J263 - Spot-Check Debugging

Implementation Note

● Since the modulo operation should be involved, it is easier to code if 
indices are 0-based

● So on day i:
○ starting offset = T[i%P]
○ only lines j where j%S == T[i%P] are checked

17


