

G266 Full Speed Ahead

Darren Lu {firewater}

2026-02-14

Background

Problem Idea by kctung

Preparation by __jk__

Presentation by firewater

Problem Statement

- Given four integers $1 \leq D \leq 10^{18}$, $0 \leq S_0 \leq 10^9$, $1 \leq A \leq 10^9$, and $\max(S_0, A) \leq M \leq 10^9$ in input.
- Find the smallest positive integer T for which there exists an array $[S_1, S_2, \dots, S_T]$ satisfying all of the following conditions:
 - $0 \leq S_i \leq M$ for every $1 \leq i \leq T$
 - $|S_i - S_{i-1}| \leq A$ for every $1 \leq i \leq T$
 - $S_T \leq A$
 - $\sum_i S_i = D$
- Output -1 if such T does not exist.

Statistics

sosad

Subtask 1 (8%): $M = A$

- No need to care about acceleration limit, and car is always able to stop immediately after the drive.
- Drive as fast as possible (at speed M) unless the sum overshoots past D .
- So the answer is simply $\text{ceil}(D / M)$.

Subtask 2 (14%): $S_0 = M$, $A = 1$, D and M are small

- Car starts at maximum possible speed, can accelerate or decelerate at most 1 per hour.
- Consider a greedy strategy, where the speeds at each hour are some (possibly zero) number of M -s, followed by an arithmetic sequence with common difference -1 from $M - 1$ down to 1: $[M, \dots, M, M - 1, M - 2, \dots, 1]$.
- If such a sequence with sum D exists (so $x * M + M * (M - 1) / 2 = D$ has a non-negative integer solution), then it gives an optimal solution.
- But if x is negative, then the sum must be too large, so output -1.
- And if x is non-integer, then use $\text{floor}(x)$ copies of M , and insert the remainder into the decreasing part. It is also to see that this is optimal.

Subtask 3 (20%): $A = 1$, D and M are small

- It is not difficult to observe that the following greedy strategy works: iterate from $i = 0$ increasingly, and suppose the speed is S_i at the i -th second, then S_{i+1} is the largest integer such that:
 - $\max(0, S_i - A) \leq S_{i+1} \leq \min(M, S_i + A)$, and
 - Putting S_{i+1} does not force the total sum to overshoot D ,
so $S_1 + S_2 + \dots + S_i + S_{i+1} + S_{i+1} * (S_{i+1} - 1) / 2 \leq D$. (by Subtask 2)
- Doing this greedy naively, the time complexity is $O(\text{answer} * A)$.
- Since the answer is bounded above by D , this fits within the time limit.

Subtask 4 (19%): $S_0 = 0$

- We could modify the greedy from Subtask 3, but it would still be too slow.
- Let's formulate an alternative problem instead:

Problem: for a fixed constant time limit T , and given S_0 , M , and A in input, what are the distances possible to be reached in (at most) T seconds?

- Clearly, such reachable distances form an interval $[0, D_T]$, and so we wish to find the value of D_T for each T .
- **Observation:** $D_T \leq D_{T+1}$ for all T .
- So, once we know how to find the values of D_T , we can simply perform a binary search to obtain the answer.

Subtask 4 (19%): $S_0 = 0$

- Fix T . Clearly, $S_i \leq \min(M, \min(i, T - i + 1) * A)$ for every $1 \leq i \leq T$.
- **Observation:** the sequence $S_i = \min(M, \min(i, T - i + 1) * A)$ is valid.
- This means our desired D_T is simply $\sum \min(M, \min(i, T - i + 1) * A)$.
- This can be calculated in $O(1)$ time:
 - If $T \leq 2 * \text{floor}(M / A)$, then it is an A.S. with $d = A$ with $\text{ceil}(T / 2)$ terms, then another A.S. with $d = -A$ with $\text{floor}(T / 2)$ terms.
 - If $T > 2 * \text{floor}(M / A)$, then it is an A.S. with $d = A$ with $\text{floor}(M / A)$ terms, then $T - 2 * \text{floor}(M / A)$ terms of M , then another A.S. with $d = -A$ with $\text{floor}(M / A)$ terms.
- This solves subtasks 1, 3, and 4 together. (Score: $8 + 20 + 19 = 47$)

Subtasks 5 (21%) and 6 (18%): Full Solution

- Similar to Subtask 4, we ask the same problem again.
- However, the reachable distances are no longer intervals $[0, D_T]$ as in Subtask 4. Nevertheless, we can still note the following:
- **Observation:** the reachable distances form a (possibly empty) interval $[D_T^{\min}, D_T^{\max}]$ for each fixed time limit T .
- Clearly, if $\text{ceil}(S_0 / A) - 1 > T$, then there is no reachable distance
- Otherwise, $D_T^{\min} = \sum_i S_0 - i * A$, where the sum ends right before the terms become negative. Therefore, we can deduce that:
- **Observation:** D_T^{\min} and D_T^{\max} are each monotonically increasing (for the non-empty intervals).

Subtasks 5 (21%) and 6 (18%): Full Solution

- Similar as Subtask 4, once we fix $T \geq \lceil S_0 / A \rceil - 1$ (so that we guarantee a construction exists), we must have that for every $1 \leq i \leq T$, $S_i \leq \min(M, S_0 + i * A, (T - i + 1) * A)$ holds.
- Also, we can make the same observation, that when we take the equality case above for every $1 \leq i \leq T$, it forms a valid sequence.
- The desired sum $D_T^{\max} = \sum \min(M, S_0 + i * A, (T - i + 1) * A)$ can also be calculated in $O(1)$ time. Separate cases for which of the three expressions are attaining the minimum. Details are left as an exercise for the reader.
- So we can do binary search just like in Subtask 4. Remember to handle the -1 case. This solves all subtasks.