

G264 - Infinite Whack-a-mole

Isaac Wong {WongChun1234}

2026-02-14

Background

- Problem idea by kctung
- Preparation by hywong1
- Presentation by cwong

Problem Restatement

- There are $N+1$ holes and a mole initial in hole 1
- Each time a mole is whacked, it disappears and two appear in the next hole
- Determine whether it is possible to get exactly M moles in hole N and find the minimum number of whacks needed to do so

Statistics

Task	Attempts	Max	Mean	Std Dev	Subtasks					
					13: 31	22: 12	18: 11	13: 11	16: 12	18: 5
G264 - Infinite Whack-A-Mole	101	100	12.772	24.213						

First solved by **bstc-21003** at **1h 25m**

Subtask 1: $M \leq 2$

- **Case 1:** $N = 1$
- Initially, we only have 1 mole in hole 1.
- Hence it is only possible if $M = 1$, and we do not need any whacks

- **Case 2:** $N > 1$
- We can always get 2 moles in hole N by whacking a mole in hole 1, 2, ... $N - 1$ in order for a total of $N - 1$ whacks
- If $M = 1$ then we need to whack away 1 mole in hole N

Subtask 2: $N, M \leq 1000$

- We can simulate the process with a greedy algorithm:
- We find the hole with the largest id that has a mole in it (and is not hole N), and we whack once in that hole
- Repeat this until we have at least M moles in hole N (and whack once more if M is odd!)
- Time complexity: $O(NM)$

Subtask 3: M is a power of 2, Always possible to win

- Assume we need $M = 2^k > 1$ moles in hole N
- Then we need to whack 2^{k-1} moles in hole N-1, 2^{k-2} moles in hole N-2 ... and 2 moles in hole N-k+1
- Use the solution in subtask 1 to get 2 moles in hole N-k+1 and whack the moles in hole N-k+1, N-k+2 ... N-1
- Handle the $M = 1$ case using the solution from subtask 1
- Time complexity: $O(\log M)$

Subtask 4: M is a power of 2

- When will the solution from subtask 3 fail?
- It requires that $N-k+1 \geq 2$, otherwise we will not be able to perform the subtask 1 solution
- Add an if-then-else statement to check this condition
 - If the condition holds then do the subtask 3 solution
 - Otherwise report impossible
- Time complexity: $O(\min(N, \log M))$

Subtask 5: $N \leq 10^5$

- We can expand the idea from previous subtasks:
- If we want hole $i+1$ to have k moles, then we will also need hole i to have at least $\text{ceil}(k/2)$ moles
- We can compute an array $\text{cnt}[]$, where $\text{cnt}[i]$ is the minimum number of moles needed such that we can get M moles in hole N
 - $\text{cnt}[N] = M$
 - $\text{cnt}[i] = \text{ceil}(\text{cnt}[i+1]/2)$ for all $1 \leq i < N$
- If $\text{cnt}[1] > 1$, we report impossible
- Otherwise the answer is the sum of $\text{cnt}[1], \text{cnt}[2], \dots, \text{cnt}[N-1]$ as we will need to whack all $\text{cnt}[i]$ moles in hole i
- Remember to do the +1 whack if M is odd!
- Time complexity: $O(N)$

Subtask 6: No additional constraints

- We cannot compute the whole $\text{cnt}[]$ array anymore, as it would be too large
- Notice that the first $N-k$ elements, where $k=\text{ceil}(\log M)$, of $\text{cnt}[]$ are all 1s
- Therefore we can skip the calculation for all of those entries of $\text{cnt}[]$ and only compute the ones that are not equal to 1
- Time complexity: $O(\min(N, \log M))$