
S243 - Stop the Avalanche!

S243 - Stop the Avalanche!
Vincent Chiu {VCLH}

2024-02-17

S243 - Stop the Avalanche!

Background

Problem idea by kctung
Preparation by kctung, __declspec and VCLH
Illustration by microtony and __declspec

Slides by __declspec and VCLH
Presentation by VCLH

2

S243 - Stop the Avalanche!

Problem Restatement

In a size-N triangle, some cells are occupied
by trees. For each query, a snowball will be
rolling down from the top of the hill, whose
path is unpredictable.
You can fill a size-k’ sub-triangle (1 ≤ k’ ≤ K[i])
with trees at any moment, depending on the
location of the snowball at that moment.
What is the earliest time you can stop the
snowball in the worst case in each query?

3

S243 - Stop the Avalanche!

Problem Restatement

4

S243 - Stop the Avalanche!

Subtasks

Partial score provided:
For all subtasks, you can score 30% if your program
can, in each test case, determine if it’s possible to
always stop the snowball correctly for every query.

5

S243 - Stop the Avalanche!

 N + H + B + S + G = T
D.N.A. 17 + 7 + 7 + 1 + 0 = 32
0 points 3 + 0 + 1 + 0 + 0 = 4
2 points 3 + 5 + 5 + 1 + 0 = 14
2.4-7.4 points 1 + 2 + 3 + 1 + 0 = 7
8 points 0 + 0 + 0 + 1 + 0 = 1
10 points 1 + 0 + 1 + 4 + 2 = 8
12.7 points 1 + 0 + 0 + 0 + 0 = 1
15.4 points 0 + 1 + 2 + 3 + 2 = 8
16.4 points 0 + 0 + 0 + 1 + 0 = 1
19.2 points 0 + 0 + 1 + 0 + 0 = 1
22 points 0 + 0 + 0 + 1 + 0 = 1
23.9 points 0 + 0 + 1 + 0 + 0 = 1
26.8 points 1 + 0 + 0 + 1 + 0 = 2
37 points 0 + 0 + 0 + 0 + 1 = 1
39.4 points 0 + 0 + 0 + 0 + 1 = 1
65 points 0 + 0 + 0 + 0 + 1 = 1
81 points 0 + 0 + 0 + 0 + 1 = 1
Total 27 + 15 + 21 + 14 + 8 = 85

Statistics

No one solved it
Highest score = 81 by WYK19X17

6

S243 - Stop the Avalanche!

Subtask 1 (2%)

N=2

Sanity check
Exhaustion / Case handling

7

S243 - Stop the Avalanche!

Subtask 2 (8%)

Q=1
K[1]=0

● You cannot cast the spell at all
● Check if the snowball can roll to the bottom by keeping track of the cells it

can reach from top to bottom
● If it cannot reach any cells in one row, output that row and exit

8

S243 - Stop the Avalanche!

Reachability

● Perform the algorithm from the top row
to the bottom row, like Pascal triangle

● 2D Boolean array: reachable[i][j]
○ reachable[i][j] is true if snowball can

roll from (1,1) to (i,j)
● Simulate how the snowball rolls

○ If (i,j) is not a tree, reachable[i][j] =
reachable[i-1][j] || reachable[i-1][j-1]

9

1

1

1

1

1

1 0

01

01

1

1

0

0

S243 - Stop the Avalanche!

Subtask 3 (9%)

Q=1
K[1]=1

● You must cast the 1-spell directly below the snowball.
● It is always optimal to stop the snowball immediately if possible
● If you can cast a 1-spell without stopping the snowball immediately, don’t

cast it now; you can always delay it
● Do similar things with reachability but snowball can be stopped if any of

the two cells below is a tree

10

S243 - Stop the Avalanche!

Subtask 3 (9%)

● If you cast a 1-spell without stopping
the snowball immediately, you can
always cast it later

● For example, rather than deploying the
spell at (2, 1), we can delay it to (5, 1)

11

S243 - Stop the Avalanche!

Subtask 4 (18%)

Q=1
N≤20

● Observation: it is always optimal to
cast a spell directly below the snowball
(defined by the top of the spell triangle)

● Otherwise, we can wait until the
snowball falls to the point where the
spell is cast

12

S243 - Stop the Avalanche!

Subtask 4 (18%)

● Observation: it is always optimal to
cast a spell directly below the snowball
(defined by the top of the spell triangle)

● For example, at time t=2, rather than
deploying the spell at (3, 3), we can
deploy it at (4, 3)

13

S243 - Stop the Avalanche!

Subtask 4 (18%)

● Brute force by DFS
● Simulate the rolling of the snowball at (r, c)
● Try casting the spell with top of triangle at the cells directly bottom of the

snowball (if either cell is a tree then we can directly stop the snowball)
○ Calculate the time the snowball stops in the worst case like Subtask 3

● Or not casting the spell at all and let the snowball roll to the cells below
○ The time the snowball stops in the worst case is max(dfs(r+1,c), dfs(r+1,c+1))

● See which option stops the snowball the quickest
● One implementation has time complexity: O(N4), space complexity: O(N4)

○ But constraints are small enough

14

S243 - Stop the Avalanche!

Subtask 5,6,7 (13%,15%,16%)

Subtask 5: Q=1, N≤300 | Subtask 6: N≤300 | Subtask 7: Q=1

● Repeated calculations of dfs(r, c)
● Calculate bottom-up like Fibonacci numbers

○ Also known as dynamic programming
● That is, compute value of dfs(r, c) by descending row order since the

value of dfs(r, c) only depend of the value of dfs(r+1, c) and dfs(r+1, c+1)
● Time complexity: O(QN4) or O(QN3) or O(QN2) depending how well you

optimised the preprocessing
○ We don’t need to compute where the snowball stops every time

15

S243 - Stop the Avalanche!

Full solution

● The previous solutions are still kind of “brute force”
● We need a way to compute the answer for every size of the spell, all at

once, in O(QN2)
● It is always very tempting to code up suboptimal solutions without

proving them, for example “filling gaps” when possible, or assuming it is
always optimal to cast the spell at the same level

● In fact, our initial full solution was wrong

16

S243 - Stop the Avalanche!

Observation

● To stop the snowball, either it stops at two
naturally occurring trees, or a naturally
occurring tree and a tree from the spell

● It is always optimal to cast the spell only
when the snowball is diagonally above a tree
○ The star positions in the image
○ Each star corresponds to one red triangle

which is the spell to be cast to stop it
○ Remember we only cast spells directly under

the snowball
● Otherwise just let it roll to a star position and

then cast the spell

17

S243 - Stop the Avalanche!

Observation

● The star positions form the “safety net” of
that tree

● Observe that if the snowball is within the
safety net, and if the distance between the
snowball and the tree is d, then a d-spell is
sufficient to stop the snowball (*)

● Particularly, a d-spell is only necessary if and
only if the snowball is located on the edge of
the net, i.e. on the star positions (**)

18

S243 - Stop the Avalanche!

Full solution

● Consider this problem: for all cells, if we
know the distance to the closest tree
(below the cell) from there, can we
compute the answer?

19

Consider this configuration:
0

0 0
0 0 0

0 0 0 0
1 0 0 0 0

0 0 0 0 1 0
1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

Dist to closest tree from each cell:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

S243 - Stop the Avalanche!

Full solution

● Let d[i][j] be distance to the closest tree
below (i, j) (∞ if no trees below)

From (*), we know that
● d[i][j] is 1 + the distance to its stopping

position if the spell to be cast is
determined at time t=(i-1)

● d[i][j] is also the sufficient “size” of the
spell to be cast at time t=(i-1)

20

Consider this configuration:
0

0 0
0 0 0

0 0 0 0
1 0 0 0 0

0 0 0 0 1 0
1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

S243 - Stop the Avalanche!

Full solution

From (**), we know that
● As long as the snowball is still inside the

“safety net” of some tree, we can delay
the spell till it reaches the edge of the net.

● Delaying means a smaller d[][] in the
future (lower cells)

● Delaying does not change the stopping
position

● ⇒ Earlier d’s are still valid in determining
the stopping position, as long as they are
within the safety net of the tree

21

Consider this configuration:
0

0 0
0 0 0

0 0 0 0
1 0 0 0 0

0 0 0 0 1 0
1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

S243 - Stop the Avalanche!

Full solution

● Therefore, we select cells in the triangle
using values ≤ k[i] (k[i]=1 in the example)
to form a “tighter” selection

● It means that the snowball can be
stopped using a k[i]-spell after reaching
any cell from that line (by (*))

● Answer = max row of cells + max time in
that row - 2 (in this case 7+1-2=6)

22

Consider this configuration:
0

0 0
0 0 0

0 0 0 0
1 0 0 0 0

0 0 0 0 1 0
1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

S243 - Stop the Avalanche!

Full solution

● Select some cells with values ≤ k[i] (=1 on the example) which blocks the
snowball from rolling to bottom while minimising the bottommost row’s
index

Why is it optimal?
● Consider an optimal selection (bottommost row index minimised, snowball

on every cell in the selection can be stopped by k[i]-spell), but not
necessarily using values ≤ k[i]

● Consider value of (i, j) which is > k[i]. It can be stopped by a k[i]-spell,
meaning it is not on the edge of the tree contributing its value (by (**)).
Hence, we are able to replace (i, j) with (i+1, j) and (i+1, j+1) and that still
works. Note that this process does not affect the answer, even if it
changes the bottommost row’s index. (row+1 but time-1)

23

S243 - Stop the Avalanche!

Full solution

Consider using a 2-spell. 3 on (3, 3) is not the edge of a safety net, so we can
choose the bottom two cells instead.
(Note: the selection is not necessarily a line as we will see.)

24

4
3 4

2 3 3
1 3 2 2

0 2 2 1 1
1 1 1 2 0 2

0 0 0 1 1 ∞ 1
∞ ∞ ∞ ∞ 0 ∞ ∞ 0

4
3 4

2 3 3
1 3 2 2

0 2 2 1 1
1 1 1 2 0 2

0 0 0 1 1 ∞ 1
∞ ∞ ∞ ∞ 0 ∞ ∞ 0

S243 - Stop the Avalanche!

Up-propagation

How to construct the distance to tree values?
● Initially every d[i][j]=∞
● Calculate d[i][j] in descending row order

○ If (i, j) is a tree then d[i][j]=0
○ Otherwise d[i][j]=min(d[i+1][j], d[i+1][j+1])+1

25

Consider this configuration:
0

0 0
0 0 0

0 0 0 0
1 0 0 0 0

0 0 0 0 1 0
1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

S243 - Stop the Avalanche!

How to select?

● For each query q, let c[i][j]=1 if d[i][j] ≤ q else 0
● Run reachability (subtask 2) again!
● Time complexity: O(QN2) (subtask 7)

26

Consider this configuration:
0

0 0
0 0 0

0 0 0 0
1 0 0 0 0

0 0 0 0 1 0
1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

c[i][j] when q=1:
0

0 0
0 0 0

1 0 0 0
1 0 0 1 1

1 1 1 0 1 0
1 1 1 1 1 0 1

0 0 0 0 1 0 0 1

S243 - Stop the Avalanche!

Is that enough?

● How to select faster?
● Min cut max flow
● Let query value be q
● Find the first row such that every d[i][j]

value is ≤ q?
● Works for q=2, but not quite for q=1

27

Consider this configuration:
0

0 0
0 0 0

0 0 0 0
1 0 0 0 0

0 0 0 0 1 0
1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

max
4
4
3
3
2
2
∞
∞

???

S243 - Stop the Avalanche!

Is that enough?

● How to select?
● Consider q=1, the red line
● If we want to use the row-maximum

strategy, we don’t want the values below
the red selection to increase row maxes
below

● We can basically limit everything below
the red line with ≤ q

28

Consider this configuration:
0

0 0
0 0 0

0 0 0 0
1 0 0 0 0

0 0 0 0 1 0
1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

max
4
4
3
3
2
2
∞
∞

???

S243 - Stop the Avalanche!

Is that enough?

● How to select?
● Consider q=1, the red line
● If we want to use the row-maximum

strategy, we don’t want the values below
the red selection to increase row maxes
below

● We can basically limit everything below
the red line with ≤ q

● Lemma: this doesn’t hinder the
calculations of other queries (***)

29

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

0 1 1 2 0 1
0 0 0 1 1 1 1

0 0 0 1 0 1 1 0

max
4
4
3
3
2
2
1
1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

max
4
4
3
3
2
2
∞
∞

S243 - Stop the Avalanche!

Lemma (***)

● Lemma: this doesn’t hinder the
calculations of other queries

● Suppose we are updating with respect to
query q’s optimal selection

● For all queries p>q, the lower bound of the
answer is given q’s selection and as
things above the selection don’t change,
their answers are not affected

● For all queries p<q, the cells d[i][j]>p
remains the same since only limit to q

30

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

0 1 1 2 0 1
0 0 0 1 1 1 1

0 0 0 1 0 1 1 0

max
4
4
3
3
2
2
1
1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

max
4
4
3
3
2
2
∞
∞

S243 - Stop the Avalanche!

Down-propagation

● Here comes the magic: how do you perform the operation for every
optimal line for every query?

● Update (i, j) from top-down:
○ Let m=max(d[i-1][j], d[i-1][j-1])
○ Update d[i][j] to min(d[i][j], m)

● Every possible selection gets pushed downwards

31

S243 - Stop the Avalanche!

Down-propagation

Originally,
● d[i][j] is 1 + the distance to its stopping

position if the spell to be cast is
determined at time t=(i-1) at time t=(i-1),
as well as the sufficient “size” of the spell

After down-propagation,
● d[i][j] = minimum size of spell to be cast

at or before time t=(i-1) for the snowball
to stop on or before row (i+d[i][j])

32

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

0 1 1 2 0 1
0 0 0 1 1 1 1

0 0 0 1 0 1 1 0

max
4
4
3
3
2
2
1
1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

max
4
4
3
3
2
2
∞
∞

S243 - Stop the Avalanche!

Row summary

● And then the row maximum works now!
● Compute r[i] = maxj{d[i][j]} after the up- and down-propagation
● For each query q, find the smallest row index i such that r[i] ≤ q. Then the

answer would be r[i]+i-2 (why -2?)

33

S243 - Stop the Avalanche!

Small example

● Query 0: no selection can be made (all r[i]>0)
so output -1

● Query 1: output 7+1-2=6
● Query 2: output 5+2-2=5
● Query 3: output 3+3-2=4
● Query 8: output 1+4-2=3

34

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

0 1 1 2 0 1
0 0 0 1 1 1 1

0 0 0 1 0 1 1 0

max
4
4
3
3
2
2
1
1

d[i][j]:
4

3 4
2 3 3

1 3 2 2
0 2 2 1 1

1 1 1 2 0 2
0 0 0 1 1 ∞ 1

∞ ∞ ∞ ∞ 0 ∞ ∞ 0

max
4
4
3
3
2
2
∞
∞

S243 - Stop the Avalanche!

Large example
0

0 0
0 0 0

0 0 0 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

35

tree[i][j]:

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 7 2 2 2 2

1 1 1 1 6 6 1 1 1 1
5 0 0 0 5 5 5 0 0 0 5

20 4 4 4 4 4 4 4 4 4 4 20
20 20 3 3 3 3 3 3 3 3 3 20 20

20 20 20 2 2 2 2 2 2 2 2 20 20 20
20 20 20 20 1 1 1 4 1 1 1 20 20 20 20

20 20 20 20 20 0 0 3 3 0 0 20 20 20 20 20
20 20 20 20 20 20 2 2 2 2 2 20 20 20 20 20 20

20 20 20 20 20 20 20 1 1 1 1 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 0 20 0 20 20 20 20 20 20 20 20

36

d[i][j] before
down-propagation

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 7 2 2 2 2

1 1 1 1 6 6 1 1 1 1
5 0 0 0 5 5 5 0 0 0 5

20 4 4 4 4 4 4 4 4 4 4 20
20 20 3 3 3 3 3 3 3 3 3 20 20

20 20 20 2 2 2 2 2 2 2 2 20 20 20
20 20 20 20 1 1 1 4 1 1 1 20 20 20 20

20 20 20 20 20 0 0 3 3 0 0 20 20 20 20 20
20 20 20 20 20 20 2 2 2 2 2 20 20 20 20 20 20

20 20 20 20 20 20 20 1 1 1 1 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 0 20 0 20 20 20 20 20 20 20 20

37

d[i][j] before
down-propagation

d[8][4] = 3:
● At time t=7, it is

determined that
● Size-3 spell is sufficient
● To stop the snowball at

row (8+3-1) = 10

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 7 2 2 2 2

1 1 1 1 6 6 1 1 1 1
5 0 0 0 5 5 5 0 0 0 5

20 4 4 4 4 4 4 4 4 4 4 20
20 20 3 3 3 3 3 3 3 3 3 20 20

20 20 20 2 2 2 2 2 2 2 2 20 20 20
20 20 20 20 1 1 1 4 1 1 1 20 20 20 20

20 20 20 20 20 0 0 3 3 0 0 20 20 20 20 20
20 20 20 20 20 20 2 2 2 2 2 20 20 20 20 20 20

20 20 20 20 20 20 20 1 1 1 1 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 0 20 0 20 20 20 20 20 20 20 20

38

d[i][j] before
down-propagation

d[9][5] = 7:
● At time t=8, it is

determined that
● Size-7 spell is sufficient
● To stop the snowball at

row (9+7-1) = 15

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 7 2 2 2 2

1 1 1 1 6 6 1 1 1 1
5 0 0 0 5 5 5 0 0 0 5

20 4 4 4 4 4 4 4 4 4 4 20
20 20 3 3 3 3 3 3 3 3 3 20 20

20 20 20 2 2 2 2 2 2 2 2 20 20 20
20 20 20 20 1 1 1 4 1 1 1 20 20 20 20

20 20 20 20 20 0 0 3 3 0 0 20 20 20 20 20
20 20 20 20 20 20 2 2 2 2 2 20 20 20 20 20 20

20 20 20 20 20 20 20 1 1 1 1 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 0 20 0 20 20 20 20 20 20 20 20

39

d[i][j] before
down-propagation

q=1

Red=selection

Can check that
snowball can’t fall

through

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 7 2 2 2 2

1 1 1 1 6 6 1 1 1 1
5 0 0 0 5 5 5 0 0 0 5

20 4 4 4 4 4 4 4 4 4 4 20
20 20 3 3 3 3 3 3 3 3 3 20 20

20 20 20 2 2 2 2 2 2 2 2 20 20 20
20 20 20 20 1 1 1 4 1 1 1 20 20 20 20

20 20 20 20 20 0 0 3 3 0 0 20 20 20 20 20
20 20 20 20 20 20 2 2 2 2 2 20 20 20 20 20 20

20 20 20 20 20 20 20 1 1 1 1 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 0 20 0 20 20 20 20 20 20 20 20

40

d[i][j] before
down-propagation

Red: q=1
Blue: q=2

Numbers on lines = selected

Can check that snowball can’t
fall through

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 3 2 2 2 2

1 1 1 1 3 3 1 1 1 1
1 0 0 0 3 3 3 0 0 0 1

1 1 0 0 3 3 3 3 0 0 1 1
1 1 1 0 3 3 3 3 3 0 1 1 1

1 1 1 1 2 2 2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

1 1 1 1 1 0 0 2 2 0 0 1 1 1 1 1
1 1 1 1 1 1 0 2 2 2 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

41

d[i][j] after
down-propagation

Pink: q=1
Green: q=2

Numbers on lines = selected

Can check that snowball can’t
fall through

Red dotted lines simulating
down propagation: with a

1-spell, snowball won’t
fall to the cells

in the region
bounded by lines

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 3 2 2 2 2

1 1 1 1 3 3 1 1 1 1
1 0 0 0 3 3 3 0 0 0 1

1 1 0 0 3 3 3 3 0 0 1 1
1 1 1 0 3 3 3 3 3 0 1 1 1

1 1 1 1 2 2 2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

1 1 1 1 1 0 0 2 2 0 0 1 1 1 1 1
1 1 1 1 1 1 0 2 2 2 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

42

d[i][j] after
down-propagation

d[8][4] = 3:
● Size-3 spell is enough
● Cast at or before time t=7

○ At or before snowball
reaches (8, 4)

● To stop the snowball at or
before row (8+3-1) = 10

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 3 2 2 2 2

1 1 1 1 3 3 1 1 1 1
1 0 0 0 3 3 3 0 0 0 1

1 1 0 0 3 3 3 3 0 0 1 1
1 1 1 0 3 3 3 3 3 0 1 1 1

1 1 1 1 2 2 2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

1 1 1 1 1 0 0 2 2 0 0 1 1 1 1 1
1 1 1 1 1 1 0 2 2 2 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

43

d[i][j] after
down-propagation

d[9][5] = 3:
● Size-3 spell is enough
● Cast at or before time t=8

○ At or before snowball
reaches (9, 5)

● To stop the snowball at or
before row (9+3-1) = 11

S243 - Stop the Avalanche!

Large example
10

9 9
8 8 8

7 7 7 7
6 6 6 6 6

5 5 5 5 5 5
4 4 4 4 4 4 4

3 3 3 3 3 3 3 3
2 2 2 2 3 2 2 2 2

1 1 1 1 3 3 1 1 1 1
1 0 0 0 3 3 3 0 0 0 1

1 1 0 0 3 3 3 3 0 0 1 1
1 1 1 0 3 3 3 3 3 0 1 1 1

1 1 1 1 2 2 2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

1 1 1 1 1 0 0 2 2 0 0 1 1 1 1 1
1 1 1 1 1 1 0 2 2 2 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

44

d[i][j] after
down-propagation

d[12][7] = 3:
● Size-3 spell is enough
● Cast at or before time t=11

○ At or before snowball
reaches (12, 7)

● To stop the snowball at or
before row (12+3-1) = 14

S243 - Stop the Avalanche!

Conclusion

● Up-propagation
● Down-propagation
● Row summary
● Easy 100 points

45

