HHCe 香洪電脂奥林匹克競寒

S242－Path of Infinity

Kelvin Chow \｛Lrt1088\} 2024－02－17

Table of Contents
（1）The Problem
（2）Sum them up！
（3）Optimize！

4）Handle negative cycles！

Background

Problem Idea by mtyeung1
Preparation by Lrt1088

Problem Restatement

－Given a graph with the structure shown in the figure，each ring has N nodes．
－Each node is assigned a weight C_{i} ．
－Answer Q all－pairs shortest path
 queries．If the answer is negative， output 0.

Statistics

| 0 points | $9+2+0+0=11$ |
| :--- | :--- | :--- |
| 13 points | $8+0+0+0=8$ |
| 27 points | $9+1+0+0=10$ |
| 38 points | $1+0+0+0=1$ |
| 54 points | $1+0+0+0=1$ |
| 56 points | $6+12+5+0=23$ |
| 100 points | $0+4+9+8=21$ |

First solved by ryanjz2024 at 21m 6s

Subtasks

Subtask	Points	Constraints
1	13	$Q=1, C_{i} \geq 1,1 \leq X_{1}, Y_{1} \leq N$
2	14	$Q=1, C_{i} \geq 1$
3	29	$C_{i} \geq 1$
4	11	$Q=1, C_{i} \geq-1,1 \leq X_{1}, Y_{1} \leq N$
5	16	$Q=1,1 \leq X_{1}, Y_{1} \leq N$
6	17	No additional constraints

Table of Contents
（1）The Problem
（2）Sum them up！
（3）Optimize！

4）Handle negative cycles！

Subtask 1 （13 pts）：$Q=1, C_{i} \geq 1,1 \leq X_{1}, Y_{1} \leq N$

－Let＇s deconstruct the constraints．
－$Q=1$ allows us to write an $O(N Q)$ algorithm．
－$C_{i} \geq 1$ eliminates the possibility of negative fares．（We always want to visit as few stations as possible！）
－ $1 \leq X_{1}, Y_{1} \leq N$ means that we can focus on the ring on the left．

Subtask 1 （13 pts）：$Q=1, C_{i} \geq 1,1 \leq X_{1}, Y_{1} \leq N$

Observation：There are 2 paths from station X_{1} to station Y_{1} ．
Example：Station 2 to Station 5.
－Path 1： $2 \rightarrow 3 \rightarrow 4 \rightarrow 5$（Cost：$C_{2}+C_{3}+C_{4}+C_{5}$ ）
－Path 2： $2 \rightarrow 1 \rightarrow 5$（Cost：$C_{2}+C_{1}+C_{5}$ ）

Subtask 1 （13 pts）：$Q=1, C_{i} \geq 1,1 \leq X_{1}, Y_{1} \leq N$
－Assume $X_{1} \leq Y_{1}$ ．The costs of the 2 paths are：
－$C_{X_{1}}+C_{X_{1}+1}+\ldots+C_{Y_{1}}$
－$\left(C_{1}+C_{2}+\ldots+C_{N}\right)-\left(C_{X_{1}+1}+C_{X_{1}+2}+\ldots+C_{Y_{1}-1}\right)$

Subtask 1 （13 pts）：$Q=1, C_{i} \geq 1,1 \leq X_{1}, Y_{1} \leq N$

－Assume $X_{1} \leq Y_{1}$ ．The costs of the 2 paths are：
－$C_{X_{1}}+C_{X_{1}+1}+\ldots+C_{Y_{1}}$
－$\left(C_{1}+C_{2}+\ldots+C_{N}\right)-\left(C_{X_{1}+1}+C_{X_{1}+2}+\ldots+C_{Y_{1}-1}\right)$
Implementation：

```
cin >> X[1] >> Y[1];
if(X[1] > Y[1]) swap(X[1], Y[1]);
int route1 = 0;
for(int i=X[1]; i<=Y[1]; ++i) route1 += C[i];
int route2 = 0;
for(int i=1; i<=N; i++) route2 += C[i];
for(int i=X[1]+1; i<Y[1]; i++) route2 -= C[i];
cout << min(route1, route2) << "\n";
```

Subtask 2 （14 pts）：$Q=1, C_{i} \geq 1$
－In this subtask，we have to handle cases where X_{i} and Y_{i} belong to different railway lines．
－Decompose this into two different journeys，$X_{i} \rightarrow N$ and $N \rightarrow Y_{i}$ ．Each of them contains two different possible paths．

Table of Contents
（1）The Problem
（2）Sum them up！
（3）Optimize！

4）Handle negative cycles！

Subtask 3 （29 pts）：$C_{i} \geq 1$

－We＇re using a $O(N Q)$ solution in the previous subtasks，which will result in a TLE verdict．
－Luckily，the only slow part is for calculating the range sums．This can be optimized by prefix sum／partial sum．
－The time complexity becomes $O(N+Q)$ in total．

Table of Contents

（1）The Problem
（2）Sum them up！
（3）Optimize！
（4）Handle negative cycles！

Subtask 4 （11 pts）：$Q=1, C_{i} \geq-1,1 \leq X_{1}, Y_{1} \leq N$

－You will realize that the solution to subtasks 1－3（assuming no repeated vertices are visited）does not work anymore．This is because we might obtain a（more） negative cost by going farther．
－In this subtask，we are only required to deal with $C_{i}=-1$ ．

Subtask 4 （11 pts）：$Q=1, C_{i} \geq-1,1 \leq X_{1}, Y_{1} \leq N$
Observation 4.1
If there are two adjacent vertices with $C_{i}=-1$ ，the answer is always 0 ．
Reason：We can reach the two vertices，visit them repetitively to obtain $-\infty$ cost．

Subtask 4 （11 pts）：$Q=1, C_{i} \geq-1,1 \leq X_{1}, Y_{1} \leq N$

Observation 4.2

If there are two adjacent vertices with $C_{i}=-1$ and $C_{i}=0$ respectively，the answer is always 0.
Reason：We can reach the two vertices，visit them repetitively to obtain $-\infty$ cost．

Subtask 4 （11 pts）：$Q=1, C_{i} \geq-1,1 \leq X_{1}, Y_{1} \leq N$
Observation 4.3
In all other cases，it＇s not wise to visit any vertex more than once．
Reason：We will be charged extra non－negative cost if we visit more vertices than what＇s required．

Subtask 4 （11 pts）：$Q=1, C_{i} \geq-1,1 \leq X_{1}, Y_{1} \leq N$

－By the above observations，we are only required to check for adjacent pairs of vertices．The answer is $-\infty$ if there are $\{-1,-1\}$ or $\{0,-1\}$ pairs．Remember to check ALL adjacent pairs especially for the pairs around N ．
－Otherwise，apply subtask 2＇s solution to find the minimal cost．
－Be aware of the following case！The cost is -1 which is in between $-\infty$ and 0 ．

Subtask 5 （16 pts）：$Q=1,1 \leq X_{1}, Y_{1} \leq N$
－Subtask 4 should have given you a quick insight on the $-\infty$ case－the answer is $-\infty$ if and only if there exists a negative cycle in the graph．

Subtask 5 （16 pts）：$Q=1,1 \leq X_{1}, Y_{1} \leq N$

－Suppose the cycle has even length：$P_{1} \rightarrow P_{2} \rightarrow P_{3} \rightarrow \cdots \rightarrow P_{2 K} \rightarrow P_{1}$ ．
－Since the cycle is a negative cycle，we have $C_{P_{1}}+C_{P_{2}}+\cdots+C_{P_{2 K}}<0$ ．
－Group the vertices in the cycle into groups of 2 ．We have $\left(C_{P_{1}}+C_{P_{2}}\right)+\cdots+\left(C_{P_{2 K-1}}+C_{P_{2 K}}\right)<0$.
－Since the sum of the K groups are negative，at least one group is negative，i．e． $C_{u}+C_{v}<0$ for some adjacent (u, v) ．
－We can form a length－2 negative cycle by repeatingly visiting vertices u and v only．

Subtask 5 （16 pts）：$Q=1,1 \leq X_{1}, Y_{1} \leq N$

－What if the cycle is of odd length？We cannot group them anymore．．．
Example： $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$ ．
－We can produce an even length cycle from an odd length cycle by repeating the list of vertices twice．
Example： $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$ ．
－The argument on the previous slide will still apply．

Subtask 5 （16 pts）：$Q=1,1 \leq X_{1}, Y_{1} \leq N$

Observation 5.1 （Summary）

If the graph contains a negative cycle，it also contains a negative cycle of length 2.

Observation 5.2 （Corollary）

A graph contains a negative cycle if and only if there exists a negative cycle of length 2，i．e．there exists adjacent vertices (u, v) such that $C_{u}+C_{v}<0$ ．

Full Solution

We＇ve already covered all necessary details for the full solution！
You can get full score by combining the solutions to Subtask 3 （prefix sum／partial sum）and Subtask 5 （checking for negative cycles）．

