S241 - Mirror Horror

Ethen Yuen \{ethening\} 2024-02-17

Background

Problem Idea by kctung
Preparation by mlwong，ethening，kobebryan9

Problem Restatement

Given a $(2 \mathrm{~N}+1) \times(2 \mathrm{M}+1)$ grid with people in some cells（even row \＆col）and mirrors in some cells．

Task：Choose a direction for all people to face， such that they don＇t look into each other and mirror．＊Some directions are predetermined

Figure 2：People making eye contact． Note that the person between them will not obstruct their view．

Figure 3：A person facing a mirror． Again，the person between him and the mirror will not obstruct his view．

Figure 4：People feeling comfortable．

2 3	Possible
．．．M．MM	．．．M．MM
．？．v．く．	．く．v．く．
M．M．．．．	M．M．．．．
．＾．＜M？．	．＾．＜M＞．$_{\text {MMM．MM．}}$
MMM．MM．	

Statistics

0 points	$6+0+0+0=6$
11 points	$3+0+0+0=3$
12 points	$5+0+0+0=5$
21 points	$3+0+0+0=3$
23 points	$0+1+0+0=1$
32 points	$2+0+0+0=2$
38 points	$7+1+0+0=3$
49 points	$2+6+1+0=9$
60 points	$1+0+0+0=1$
71 points	$5+4+0+0=9$
75 points	$0+1+0+0=1$
86 points	$1+0+0+0=1$
100 points	$0+8+13+8=29$

Attempts	Max		Mean	Std Dev		
78	100		60.871	36.237		
Subtasks						
12： 69	9： 63	11：54	17： 58	22： 41	15：31	14：29

First solved by yellowtoad at 15 m 1 s

Subtasks

SUBTASKS

Points Constraints

If i and j are both even，then $C_{i, j}$ must be one of $\wedge, \vee,<,>$ or ？．\wedge means the person in the cell must face up，v means the person in the cell must face down，＜means the person in the cell must face left，＞means the person in the cell must face right，and ？means that the direction has not been decided for the person in the cell．
Otherwise，$C_{i, j}$ must be M or ．．where M means the cell contains a mirror block，and ．means the cell is empty．
$1121 \leq N, M \leq 250$
Everyone＇s direction has not been decided． There are no mirror blocks．
$9 \quad 1 \leq N, M \leq 250$
Everyone＇s direction has not been decided． There is exactly one mirror block．
$111 \leq N, M \leq 250$
Everyone＇s direction has been decided by Bob．
$1 \leq N, M \leq 250$
Everyone＇s direction has not been decided．
There is at most one mirror block in each row． There is at most one mirror block in each column．
$221 \leq N, M \leq 250$
Everyone＇s direction has not been decided．
15
$1 \leq N, M \leq 1000$
Everyone＇s direction has not been decided．

Subtask 1

Subtask 1 （12\％）：All directions not decided，No mirror blocks
－Sanity check．Simply output a config where no one face each other．
－A easy answer is to make everyone face the same direction．

Score： 12
Time Complexity：O（NM）

$\ldots \ldots \ldots$	$\ldots \ldots \ldots$
$. ? . ? . ?$.$<.<.<$.
$\ldots \ldots \ldots$	$\ldots \ldots$.
$. ? . ? . ?$.$<.<.<$.
$\ldots \ldots$.	$\ldots \ldots$.

Subtask 2

Subtask 2 （9\％）：All directions not decided，Exactly one mirror block
－The mirror block only affect the directions when it is on the same row of some people（config 1）／on the same column of some people（config 2）．
－Either make everyone face up，or make everyone face left．One of these always works．

Score： 9 （Cumulative：21）
Time Complexity：O（NM）

	－•••••	－．．．．．
．？M？．？．	．？．？．？．	．？．？．？．
	．M．．．．	M．．．．
．？．？．？．	．？．？．？．	．？．？．？．

Subtask 3

Subtask 3 （11\％）：All directions are decided，N，M＜＝ 250
－This subtask requires you to write a simple checker．
－The most naive way would work：start from each person and loop through cells in the direction it is facing．
－Invalid when you meet cells facing the opposite direction or mirror．

Score： 11 （Cumulative：32）
Time Complexity： $\mathrm{O}\left(\mathrm{N}^{\wedge} 2 \mathrm{M}^{\wedge} 2\right)$

Subtask 4

Subtask 4 （17\％）：All directions not decided，At most one mirror block per row／col
－Most important subtask for observation．
－Consider how to solve a single row：Each row has at most one mirror，let＇s make every person on left face left，and those on right face right．
－Solve each row one by one with this algorithm！
－（This also works similarly with column）

Score： 40 （Cumulative：49）
Time Complexity：O（NM）

．．M．	．M．
．＜M＞．${ }^{\text {c }}$	．＾M＾．v．
．M．	．．．M．
．＜．＜M＞．	．＾．vMv．
．M．．	．M．．

Subtask 5 \＆ 6

Subtask 5 \＆ 6 （22\％\＆15\％）：All directions not decided，（ $\mathrm{N}, \mathrm{M}<=250$／N，M＜＝1000）
－Think about what cannot be handled by subtask 4＇s solution：What will happen when a row has＞＝two mirror block？

```
.?M?.?.?M?.?M?.?.
```


Subtask 5 \＆ 6

Subtask 5 \＆ 6 （22\％\＆15\％）：All directions not decided，（N，M＜＝ 250 ／N，M＜＝1000）
－Think about what cannot be handled by subtask 4＇s solution：What will happen when a row has＞＝two mirror block？

．＜M？．？．？M？．？M＞．＞．

－While the people on two sides can be solved easily， the people in the middle can neither face left nor right no matter what the configuration of other cells are．
－The same applies to column，the middle part can neither face up or down．

\cdot
M
$?$
M
V
\cdot

Subtask 5 \＆ 6

Subtask 5 \＆ 6 （22\％\＆15\％）：All directions not decided，（ $\mathrm{N}, \mathrm{M}<=250$／N，M＜＝1000）
－If any person is surrounded by mirror on all sides

It can face no direction at all－＞impossible
－Consider the possible case：process the rows and columns separately
－For each row，make every person on left of first mirror face left，and those on right of the last mirror face right．

Subtask 5 \＆ 6

Subtask 5 \＆ 6 （22\％\＆15\％）：All directions not decided，（ $\mathrm{N}, \mathrm{M}<=250$／N，M＜＝1000）
－Consider the possible case：process the rows and columns separately
－For each row，make every person on left of first mirror face left，and those on right of the last mirror face right．
－For each column，do the same．
－Why can we handle both directions separately？

Subtask 5 \＆ 6

Subtask 5 \＆ 6 （22\％\＆15\％）：All directions not decided，（ $\mathrm{N}, \mathrm{M}<=250$／N，M＜＝1000）
－Consider the possible case：process the rows and columns separately
－For each row，make every person on left of first mirror face left，and those on right of the last mirror face right．
－For each column，do the same．
－Why can we handle both directions separately？People facing left／right will never be affect by people facing up／down．They are independent．
－The impossible case can be distinguished by checking if there is still a＂？＂after the process．

Score： 60 ／ 75 （Cumulative： 71 ／86）

Full Solution

Subtask 7 （14\％）：No additional constraints
－What cases become unable to handle with subtask 6＇s solution？

```
.?M?.?.?M?.?.>.?.
```

－This is ok
.?M? .? .?M?.?.v.?.
－This is ok too．

Full Solution

Subtask 7 （14\％）：No additional constraints
－What cases become unable to handle with subtask 6＇s solution？

```
.?M?.?.?M?.?.<.?.
```

－This is not ok（The＜breaks the whole config no matter what）
.?.?.?.?.र.?.>.?.
－This is not ok．（No mirror but you cannot place＞before the＜in the input）

Full Solution

Subtask 7 （14\％）：No additional constraints
－The key part is：On each row，preplaced＜and＞also constrained your placement of＜and $>$ ．（Like how a mirror constrained the placement）
－Revise the strategy for each row：
－From left to right，place＜at ？positions until you meet＞or M．
－From right to left，place＞at ？positions until you meet＜or M．
－Do the same for each column．
－Then done！

Full Solution

Subtask 7 （14\％）：No additional constraints
－Then done？
－You still need to check if the whole configuration is fully placed（no more ？）and if it is valid as a whole．
－Because preplaced direction may already ruined the config．
－You can improve subtask 3 checker by checking each row／col in a batch．

Score： 100
Time Complexity：O（NM）

Conclusion

－Some takeaways
－Don＇t be scare away simply because the statement is long or because it＂looks complicated＂
－Observe what elements are independent／dependent on other elements，try to simplify the problem with it
－Turning 2D problems into 1D problems is a common way
－Subtask is used to guide your thinking
－Think about what cases you cannot handle with previous subtasks＇ solution is a good way

