# J244 - Passing Rate 

Daniel Hsieh \{QwertyPi\} 2024-02-17

## Background

Problem Idea and Preparation by QwertyPi

## Problem Restatement

Given estimated scores of N students．Your task is to maximise the number of students obtaining a score not less than the average，by cleverly choosing an integer score for each of the students for Q different error margins．


## Points Constraints

## Subtasks

## For all cases：

$1 \leq N, Q \leq 10^{5}$
$1 \leq M \leq 10^{9}$
$7_{0}^{0 \leq A_{1} \leq A_{2} \leq \cdots \leq A_{N} \leq M} \begin{aligned} & 0 \leq D_{1}<D_{2}<\cdots<D_{Q} \leq \min \left(A_{1}, M-A_{N}\right)\end{aligned}$
both sorted
$213 \quad 1 \leq N \leq 10$
$1 \leq Q \leq 50$
$M=100$
3
$18 \quad 1 \leq N \leq 500$
$1 \leq Q \leq 50$
$M=100$
$241 \leq N, Q \leq 500$
$151 \leq N, Q \leq 5000$

21 No additional constraints

## Statistics

0 points $45+20+11+3=79$
9 points $1+3+4+1=9$
79 points $0+0+0+2=2$
100 points $0+0+0+2=2$

First solved by s20297 at 1：05：59
Last solved by s20251 at 2：13：02

## Subtask 1

Subtask 1 （9\％）：$N=3,1 \leq Q \leq 50, M=100$
－Since N and M are small，we may enumerate all the possible cases．
－We may use three nested for－loops to do so．
－Be careful not to take the floored average！

Time Complexity： $\mathrm{O}\left(\mathrm{M}^{3} \mathrm{Q}\right)$ Expected Score： 9

```
x1 >= (x1 + x2 + x3) / 3 WA
x1 >= (double) (x1 + x2 + x3) / 3 Accepted
x1 * 3 >= x1 + x2 + x3
Accepted
```


## Subtask 2

Subtask 2 （13\％）： $1 \leq N \leq 10,1 \leq Q \leq 50, M=100$
－If we do it naively，it will now need $O\left(M^{N}\right)$ operations for a single query．
－It is hard to gain any useful information as when we change one student＇s score，the average score also changes．．．
－Can we somehow＇fix＇the average score？

## Subtask 2

－We introduce a fixed cutting score－a student passes iff student score $\geq$ cutting score
－Now，as long as

## cutting score $\geq$ average score

Then students who passes the cutting score also passes the average score．

## Subtask 2

－Instead of considering average scores，we consider all situations of （score list，cutting score）
which are valid：i．e．the cutting score $\geq$ average score．
－The problem now is：have we covered all the possibilities？
－Yes，as we may simply take the cutting score＝average score！
－More situations are considered－but the answer does not change！

## Subtask 2



## Subtask 2



## Subtask 2

Observation 1．It suffices to consider only integral cutting scores．
－Notice that the score of the students must be integer．
－Therefore，we can take cutting score＝ceil（average score）．

Observation 2．For a fixed cutting score $\mathbf{C}$ ，for each student with a possible score of between $L$ and $R$ ，the student＇s actual score should be either $L$ or $C$ ．
－Our target is to make cutting score $\geq$ average score．
－As the cutting score is fixed，we want to minimise the average score without affecting pass／fail．
－Therefore，as long as we do not meet any＇boundary＇，we can repeatedly reduce the scores of the students．

## Subtask 2



## Subtask 2



## Subtask 2

－For this subtask，we can consider all possible cutting scores and choose either L or C for each student independently．
－You may want to use bitwise number to represent the the score choices of the students．

Time Complexity： $\mathrm{O}\left(\mathrm{M}^{\mathrm{N}} \mathrm{Q}\right)$
Expected Score： 22

## Subtask 3

Subtask 3 （18\％）： $1 \leq N \leq 500,1 \leq Q \leq 50, M=100$
－Clearly，we cannot be too brute force from now on，and we need some more intuitive ideas！
－Question：When would we choose a student with score of C instead of L ？
－The student does not pass with score L，but passes with score C．
－This gives us one more pass，in cost of that the total score will increase by C－L．

## Subtask 3



## Subtask 3



## Subtask 3



## Subtask 3

－Therefore，we may use greedily increase student＇s score from lower bound $L$ to cutting score $C$ ，as long as the average score does not exceed the cutting score，whoever with the minimum score difference．
－Notice that the estimated score are sorted，so actually the student with smaller score difference is always located on the right．This gives us a relatively easier way to greedy．

Time Complexity：O（NMQ）
Expected Score： 40

## Subtask 4

Subtask 4 （24\％）： $1 \leq N, Q \leq 500$

Observation 3．It suffices to consider cutting scores being upper bound score of some student．
－Suppose otherwise．
－We can increase the score of every student at the cutoff by 1.
－Meanwhile，the average score only increases by $\leq 1$ ．（Why？）
－Therefore，there must be equal or more passing students．

## Subtask 4

## score


upper bounds

students

## Subtask 4

## score


students

## Subtask 4



## Subtask 4

－Therefore，we can apply the solution for subtask 3 directly while considering at most N cutting scores．

Time Complexity： $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{Q}\right)$
Expected Score： 64

## Subtask 5

Subtask 5 （15\％）： $1 \leq \mathrm{N}, \mathrm{Q} \leq 5000$

Observation 4．The larger the error margin，the max no．of student passes increases or remains unchanged．
－Indeed，any score list attainable with a smaller error margin can be attained with a larger error margin！

## Subtask 5



## Subtask 5



## Subtask 5

－As a result，you can＇preserve＇the answer for previous queries（with smaller error margin），and increase the answer whenever possible．
－Suppose that we implemented the followings： check（D，K）Is it possible to have K students pass with error margin D？
－Possible pseudocode：

```
ans = 0
for query with error margin D:
    while ans < N and check(D, ans + 1):
        ans++
    output ans
```

Time Complexity： $\mathrm{O}((\mathrm{N}+\mathrm{Q}) \mathrm{N})$
Expected Score： 79

## Subtask 5

－Alternatively，you can also use binary search＋partial sum to optimise the greedy algorithm in subtask 3.

Solution Sketch：
－We may put students in three groups：fail，uncertain and pass．
－You can binary search on index for the intervals．

## Subtask 5



## Subtask 5



## Subtask 5

－Recall Observation 2：
For a fixed cutting score C，for each student with a possible score of between $L$ and $R$ ，the student＇s actual score should be either $L$ or $C$ ．
－For fail or pass，we must be choosing L．
－For uncertain，we choose $C$ for some on the right（ $\downarrow$ cost）and choose $L$ for others．
－Hence，we can binary search on answer to see how many Cs can be chosen for uncertain．
－When more $C$ is chosen instead of $L$ ，the average score is higher，and so the target is to find the exact answer such that the average score is just below the cutting score．

Time Complexity：O（NQ $\log \mathrm{N})$
Expected Score： 79

## Full Solution

－Simply combine both ideas of subtask 5 （preserve answer＋partial sum）！

Time Complexity： $\mathrm{O}((\mathrm{N}+\mathrm{Q}) \log \mathrm{N})$
Expected Score： 100

## Alternative Solution

－Without observation 3 （cutting score＝upper bound），you can still technically do binary search on the cutting score．
－This adds another log to the solution，but is still completely fine．

Time Complexity： $\mathrm{O}\left((\mathrm{N}+\mathrm{Q}) \log ^{2} \mathrm{~N}\right)$
Expected Score： 100

## Conclusion

－Somehow only four contestants breakthrough subtask 2．．．
－It is useful to change your＇perspective＇，not to be limited by the problem
－Most of the time，you can＇modify＇the problem to something easier
－You may draw simple graphics on your rough work paper
－Ensure you can understand the problem／to observe something

