S224－Connectors

Gabriel Liu \｛gabrielliu2001\} 2022－01－29

Background

Author：gabrielliu2001
Setters：gabrielliu2001，trashcan，cmli
Pictures：gabrielliu2001，trashcan

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Problem Restatement

In a R x C grid，connect two red connectors and two blue connectors respectively without overlapping，or conclude that it＇s impossible

Sample 1 Input	Output			
3	3			
1	1	1	3	
2	2	3	3	3
		1	1	
		2		
			3	
			2	
			3	
			3	3

Sample 4 Input	Output				
4	4				Impossible
2	2	3	3		
3	2	2	3		

S224－Connectors

Subtasks

For all cases：
$1 \leq R, C \leq 100$
$1 \leq R_{A}, R_{B}, R_{P}, R_{Q} \leq R$
$1 \leq C_{A}, C_{B}, C_{P}, C_{Q} \leq C$
$R \times C \geq 4$
Points Constraints
$116 \quad R=2$
$C=3$

PARTIAL SCORE PROVIDED

100\％：All correct
40\％：Determine Possible／Impossible correctly

225 All four connectors are located on the boundary of the grid
Boundary of the grid：$(1,1),(1,2), \ldots,(1, C),(2, C), \ldots,(R, C),(R, C-1), \ldots(R, 1),(R-1,1), \ldots(2,1)$
321 Exactly three connectors are located on the boundary of the grid
438 No additional constraints
HHCO
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Statistics

Task	Attempts	Max	Mean	Std Dev		Subtasks	
S224－Connectors	41	100	17.497	33.346	$16: 8$	$25: 7$	$21: 6$
					$6.4: 7$	$10: 3$	$8.4: 1$

First solved by mlwong at 1：37：52

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S224－Connectors

Subtask 1

$\mathrm{R}=2$
$\mathrm{C}=3$

Exhaustion／Case handling（very annoying in this task）

Perhaps get some insights from small cases（？）

Subtask	Score	Max Score
1	16	16
2	0	25
3	0	21
4	0	38
Total	16	100

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 2

All four connectors are located on the boundary of the grid

What does this constraint tell us？

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 2

Possible Case：

Impossible Case：

Implementation

Start from any cell of the boundary，traverse the boundary in clockwise／anti－clockwise direction and record the order of the
 connectors

Be careful about cases like＂RBBR＂
What＇s the answer for：
－$R=1$ or $C=1$ ？
－$\quad R>1$ and $C>1$ ？

Subtask 2

If you take a look at the judge results page，or think a bit about this subtask， you will notice that Subtask 2 includes Subtask 1

Subtask	Score	Max Score
1	16	16
2	25	25
3	0	21
4	0	38
Total	41	100

Subtask 3

Exactly three connectors are located on the boundary of the grid

What does this constraint tell us this time？

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 3

Possible Case：

Impossible Case：

Implementation

If the answer is＂Possible＂，the pair of connectors on the boundary doesn＇t need to use any cells that is not on the boundary

Try both clockwise／anti－clockwise path for the pair of connectors on the boundary
For the remaining pair，use your favourite path finding algorithm
（DFS／BFS／whatever）to check if there＇s a path to connect them

S224－Connectors

Subtask 3

If you implement the solution carefully，you can get the first 3 subtasks correct

Subtask	Score	Max Score
1	16	16
2	25	25
3	21	21
4	0	38
Total	62	100

Full Solution

The idea from Subtask 3 can be extended

For one pair of connectors，use only the boundary and all necessary cells for reaching the boundary
Exhaust all possible directions to make life easier
For the remaining pair，again use your favourite path finding algorithm to check if there＇s a path connecting them

If it doesn＇t work for the first chosen pair，swap the pairs and try again

Full Solution 2

Lemma：if a solution exists，there exists a solution which at least one pair of connectors can use any of its shortest path

Using this lemma，a BFS solution can be implemented

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution 2

The BFS solution：
1．BFS to find a path for the red pair connectors
2．BFS to find a path for the blue pair connectors without crossing Step 1＇s path
3．If a solution is found，output；else
4．BFS to find a path for the blue pair connectors
5．BFS to find a path for the red pair connectors without crossing Step 4＇s path
6．If a solution is found，output；else it＇s impossible

Full Solution 3

Lemma：if a solution exists，there exists a solution which at least one pair of connectors can use a path with at most 3 turns

Using this lemma，a solution using only DFS twice can also be implemented

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Other Notes

There are only 3 types of impossible cases，which can be found in Sample 4， Subtask 2 and Subtask 3
You can obtain partial score if you try to determine them in your code

Other Notes

You can even check＂Possible／Impossible＂first，then for finding the first path， using some heuristic strategies to simulate BFS in Full Solution 2，or at most 3 turns in Full Solution 3
Depends on your implementation，you can pass various subtasks，or even get Accepted

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S224－Connectors

Other Notes

If you attempt full score for any subtasks，partial score also helps you check if you determine＂Possible／Impossible＂correctly or not，which can further help you check if you find the solution paths correctly or not

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

