
S222 - Gathering

S222 - Gathering
David Wai {wjx}

2022-01-29



S222 - Gathering

Background
Problem idea by David Wai
Preparation by David Wai, Joseph Cheung
Figures by Tony Wong



S222 - Gathering

Problem Restatement
Given N friends living at A1, A2, …, AN respectively

Choose K of them and select a gathering position x

Cost of each move = number of friends at the front

Find the minimum total cost

Sample Input Sample output

10 3 2
3 2 5

1

10 5 3
1 1 7 10 4

6

10 5 4
3 6 1 10 9

27



S222 - Gathering

Statistics

First solved by s16325 at 1:33:26



S222 - Gathering

Subtask 1
Subtask 1 (7%): K = 2, 1 ≤ N ≤ 5000

● Exhaust which 2 friends to choose
● Suppose we are choosing Ai and Aj (i ≠ j)

○ Choose any point x between their position
○ Before they both move to x, there is only 1 friend at the front
○ Sum of their cost = abs(Ai - Aj)

● Output the minimum total cost

Time complexity: O(N2)

Sample Input 1 Sample output 1

10 3 2
3 2 5

1



S222 - Gathering

Subtask 2
Subtask 2 (10%): K = 3
● To find the minimum total cost, we just need 

to exhaust every consecutive K friends after 
sorting by their living positions

○ Suppose we choose Al to Ar except Am (l < m < r), 
replace by Al to Ar-1 or Al+1 to Ar will get a lower cost

Sample Input 2 
(Sorted)

Sample output 2

10 5 3
1 1 4 7 10

6



S222 - Gathering

Subtask 2
Subtask 2 (10%): K = 3
● To find the minimum total cost, we just need 

to exhaust every consecutive 3 friends after 
sorting by their living positions

● The order they move does not affect the total 
cost

○ When someone moves one unit forward and the 
number of friends at the front decreases by P, the 
number of friends in front of the P friends will 
increase by 1

Sample Input 2 
(Sorted)

Sample output 2

10 5 3
1 1 4 7 10

6



S222 - Gathering

Subtask 2
Subtask 2 (10%): K = 3
● To find the minimum total cost, we just need 

to exhaust every consecutive 3 friends after 
sorting by their living positions

● The order they move does not affect the total 
cost so we can calculate the total cost easily

○ Let Fi = the number of friends in front of the ith friend
○ Total cost = sum(Fi * abs(Ai - x))

Sample Input 2 
(Sorted)

Sample output 2

10 5 3
1 1 4 7 10

6



S222 - Gathering

Subtask 2
Subtask 2 (10%): K = 3
● To find the minimum total cost, we just need 

to exhaust every consecutive 3 friends after 
sorting by their living positions

● The order they move does not affect the total 
cost so we can calculate the total cost easily

● Exhaust every position x to find the minimum 
total cost

Time complexity: O(N log N)

Sample Input 2 
(Sorted)

Sample output 2

10 5 3
1 1 4 7 10

6



S222 - Gathering

Subtask 4
Subtask 4 (10%): 1≤ N, L ≤ 500
● To find the minimum total cost, we just need to exhaust every consecutive 

K friends after sorting by their living positions
● The order they move does not affect the total cost so we can calculate the 

total cost easily
● Exhaust every position x to find the minimum cost
● O(K) time is needed to calculate the total cost for each selected K and x

Time complexity: O(NKL)



S222 - Gathering

Subtask 3
Subtask 3 (15%): K = N

● We don’t need to consider which K friends to select
● Exhaust the position x
● Calculate the total cost by using two pointers

○ Let Fi = the number of friends in front of the ith friend
○ Let sum1 = sum(Fi) (0 ≤ Ai ≤ x), sum2 = sum(Fi) (x < Ai ≤ L)
○ When x increases by 1, new total cost = previous total cost + sum1 - sum2
○ sum1 and sum2 can be maintained by using two pointers

Time complexity: O(N log N)



S222 - Gathering

Subtask 3 - Solution 2
Subtask 3 (15%): K = N
● In subtask 2, you may find that choosing the median of 3 Ai can get the 

minimum total cost
● Actually this is true for any K

○ Let Fi = the number of friends in front of the ith friend
○ Let sum1 = sum(Fi) (0 ≤ Ai ≤ x), sum2 = sum(Fi) (x < Ai ≤ L)
○ When x increases by 1, new total cost = previous total cost + sum1 - sum2
○ As x increases, sum1 increases and sum2 decreases → total cost decreases then increases
○ Total cost attains its minimum when sum1 = sum2
○ If K is odd, x = A(K+1)/2
○ If K is even, x can be any integer between AK/2 and AK/2+1

Time complexity: O(N log N)



S222 - Gathering

Subtask 5
Subtask 5 (21%): 1 ≤ N ≤ 5000

● By the observation in subtask 3 solution 2, we don’t need to exhaust the 
position x

● Exhaust every consecutive K friends after sorting by their living positions
● Calculate the cost in O(K) time

Time complexity: O(NK)



S222 - Gathering

Full Solution
Subtask 6 (37%): No additional constraints
● Exhaust every consecutive K friends after sorting by their living positions
● When choosing Ai to Ai+K-1

○ Let Fi = the number of friends in front of the ith friend
○ Let mid = i + (K + 1) / 2 - 1
○ Total cost

= sum(Fj * abs(Aj - Amid)) (i ≤ j ≤ i+K-1)

= sum(Fj * (Amid - Aj)) (i ≤ j ≤ mid) + sum(Fj * (Aj - Amid)) (mid < j ≤ i+K-1)

= sum(Fj * Aj) (mid < j ≤ i+K-1) - sum(Fj * Aj) (i ≤ j ≤ mid) + (K / 2 * Amid (if K is odd))



S222 - Gathering

Full Solution
Subtask 6 (37%): No additional constraints
● Exhaust every consecutive K friends after sorting by their living positions
● When choosing Ai to Ai+K-1

○ Let Fi = the number of friends in front of the ith friend
○ Let mid = i + (K + 1) / 2 - 1
○ Total cost = sum(Fj * Aj) (mid < j ≤ i+K-1) - sum(Fj * Aj) (i ≤ j ≤ mid) + (K / 2 * Amid (if K is odd))

● For the next consecutive K friends Ai+1 to Ai+K, we can make use of the 
previous cost

● All the calculations can be done by using two pointers
Time complexity: O(N log N)



S222 - Gathering

Full Solution 2
Subtask 6 (37%): No additional constraints
● Exhaust every consecutive K friends after sorting by their living positions
● If you know partial sum

○ Let sum1i = sum(Ai) (1 ≤ i ≤ N)
○ Let sum2i = sum(Ai * i) (1 ≤ i ≤ N)
○ Let sum3i = sum(Ai * (N - i + 1)) (1 ≤ i ≤ N)

● When choosing Ai to Ai+K-1
○ Let Fi = the number of friends in front of the ith friend
○ Let mid = i + (K + 1) / 2 - 1
○ Total cost = sum(Fj * Aj) (mid < j ≤ i+K-1) - sum(Fj * Aj) (i ≤ j ≤ mid) + (K / 2 * Amid (if K is odd)), 

which can be calculated in O(1) time by using the above partial sums

Time complexity: O(N log N)


