S222－Gathering

David Wai \｛wjx\} 2022－01－29

Background

Problem idea by David Wai

Preparation by David Wai，Joseph Cheung

Figures by Tony Wong

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Problem Restatement

Given N friends living at $A_{1}, A_{2}, \ldots, A_{N}$ respectively

Choose K of them and select a gathering position x

Cost of each move＝number of friends at the front

Find the minimum total cost

| Sample Input | Sample output |
| :--- | :--- | :--- |
| 10 3 2 1
 3 2 5 | 1 |
| 10 5 3
 1 1 7 10 4 | 6 |
| 10 5 4 27
 3 6 1 10 9 | |

S222－Gathering

Statistics

Task				Attempts	Max	Mean	Std Dev
S222－Gathering				53	100	18.641	26.289
Subtasks							
7： 35	10： 25	15： 9	10： 10	21：7		37：	

First solved by s16325 at 1：33：26

SUBTASKS

For all cases：
$1 \leq N, L \leq 10^{6}$
$1 \leq K \leq N$
$0 \leq A_{i} \leq L$

Points Constraints

1	7	$K=2$ $1 \leq N \leq 5000$ 2
10	$K=3$	
3	15	$K=N$
4	10	$1 \leq N, L \leq 500$
5	21	$1 \leq N \leq 5000$
6	37	No additional constraints

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 1

Subtask 1 （7\％）：$K=2,1 \leq N \leq 5000$
－Exhaust which 2 friends to choose
－Suppose we are choosing A_{j} and $A_{j}(i \neq j)$

Sample Input 1	Sample output 1
10 3 2 3 2 5	1

－Choose any point x between their position
－Before they both move to x ，there is only 1 friend at the front
－Sum of their cost $=\operatorname{abs}\left(A_{i}-A_{j}\right)$
－Output the minimum total cost

Time complexity：$O\left(N^{2}\right)$

Subtask 2

Subtask 2 （10\％）：$K=3$
－To find the minimum total cost，we just need to exhaust every consecutive K friends after sorting by their living positions

| Sample Input 2
 （Sorted） | Sample output 2 |
| :--- | :--- | :--- |
| 10 5 3 6
 1 1 4 7 10 | |

－Suppose we choose $A_{\text {，}}$ to A_{r} except $A_{m}(I<m<r)$ ， replace by A_{l} to A_{r-1} or A_{l+1} to A_{r} will get a lower cost

Subtask 2

Subtask 2 （10\％）：$K=3$
－To find the minimum total cost，we just need to exhaust every consecutive 3 friends after sorting by their living positions

| Sample Input 2
 （Sorted） | Sample output 2 |
| :--- | :--- | :--- |
| 10 5 3 6
 1 1 4 7 10 | |

－The order they move does not affect the total cost
－When someone moves one unit forward and the number of friends at the front decreases by P ，the number of friends in front of the P friends will increase by 1

Subtask 2

Subtask 2 （10\％）：$K=3$
－To find the minimum total cost，we just need to exhaust every consecutive 3 friends after sorting by their living positions

Sample Input 2 （Sorted）	Sample output 2
10 5 3 6 1 1 4 7 10	

－The order they move does not affect the total cost so we can calculate the total cost easily
－Let $F_{i}=$ the number of friends in front of the $i^{\text {th }}$ friend
－Total cost $=\operatorname{sum}\left(F_{i} * \operatorname{abs}\left(A_{i}-x\right)\right)$

Subtask 2

Subtask 2 （10\％）：$K=3$
－To find the minimum total cost，we just need to exhaust every consecutive 3 friends after sorting by their living positions

| Sample Input 2
 （Sorted） | Sample output 2 |
| :--- | :--- | :--- |
| 10 5 3 6
 1 1 4 7 10 l | |

－The order they move does not affect the total cost so we can calculate the total cost easily
－Exhaust every position x to find the minimum total cost

Time complexity：$O(N \log N)$

Subtask 4

Subtask 4 （10\％）： $1 \leq N, L \leq 500$
－To find the minimum total cost，we just need to exhaust every consecutive K friends after sorting by their living positions
－The order they move does not affect the total cost so we can calculate the total cost easily
－Exhaust every position x to find the minimum cost
－$O(K)$ time is needed to calculate the total cost for each selected K and x Time complexity：O（NKL）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 3

Subtask 3 （15\％）：$K=N$
－We don＇t need to consider which K friends to select
－Exhaust the position x
－Calculate the total cost by using two pointers
－Let $F_{i}=$ the number of friends in front of the $i^{\text {th }}$ friend
－Let $\operatorname{sum} 1=\operatorname{sum}\left(F_{i}\right)\left(0 \leq A_{i} \leq x\right), \operatorname{sum} 2=\operatorname{sum}\left(F_{i}\right)\left(x<A_{i} \leq L\right)$
－When x increases by 1，new total cost $=$ previous total cost + sum $1-$ sum 2
－sum1 and sum2 can be maintained by using two pointers

Time complexity：$O(N \log N)$

Subtask 3 －Solution 2

Subtask 3 （15\％）：$K=N$
－In subtask 2 ，you may find that choosing the median of $3 \mathrm{~A}_{\mathrm{i}}$ can get the minimum total cost
－Actually this is true for any K
－Let $F_{i}=$ the number of friends in front of the $i^{\text {th }}$ friend
－Let $\operatorname{sum} 1=\operatorname{sum}\left(F_{i}\right)\left(0 \leq A_{j} \leq x\right), \operatorname{sum} 2=\operatorname{sum}\left(F_{i}\right)\left(x<A_{i} \leq L\right)$
－When x increases by 1，new total cost＝previous total cost＋sum1－sum2
－As x increases，sum1 increases and sum2 decreases \rightarrow total cost decreases then increases
－Total cost attains its minimum when sum1＝sum2
－If K is odd，$x=A_{(K+1) / 2}$
－If K is even，x can be any integer between $A_{K / 2}$ and $A_{K / 2+1}$
Time complexity：$O(N \log N)$

Subtask 5

Subtask 5 （21\％）： $1 \leq N \leq 5000$
－By the observation in subtask 3 solution 2，we don＇t need to exhaust the position x
－Exhaust every consecutive K friends after sorting by their living positions
－Calculate the cost in $O(K)$ time

Time complexity：O（NK）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

Subtask 6 （37\％）：No additional constraints

－Exhaust every consecutive K friends after sorting by their living positions
－When choosing A_{i} to A
－Let $F_{i}=$ the number of friends in front of the $i^{\text {th }}$ friend
－Let mid $=i+(K+1) / 2-1$
－Total cost

$$
\begin{aligned}
& =\operatorname{sum}\left(F_{j}^{*} \operatorname{abs}\left(A_{j}-A_{\text {mid }}\right)\right)(i \leq j \leq i+K-1) \\
& =\operatorname{sum}\left(F_{j}^{*}\left(A_{\text {mid }}-A_{j}\right)\right)(i \leq j \leq \operatorname{mid})+\operatorname{sum}\left(F_{j}^{*}\left(A_{j}-A_{\text {mid }}\right)\right)(\text { mid }<j \leq i+K-1) \\
& =\operatorname{sum}\left(F_{j}^{*} A_{j}\right)(\text { mid }<j \leq i+K-1)-\operatorname{sum}\left(F_{j}^{*} A_{j}\right)(i \leq j \leq \text { mid })+\left(K / 2 * A_{\text {mid }}(\text { if } K \text { is odd })\right)
\end{aligned}
$$

Full Solution

Subtask 6 （37\％）：No additional constraints

－Exhaust every consecutive K friends after sorting by their living positions
－When choosing A_{i} to A
－Let $F_{i}=$ the number of friends in front of the $i^{\text {th }}$ friend
－Let mid $=i+(K+1) / 2-1$
－Total cost $=\operatorname{sum}\left(F_{j}^{*} A_{j}\right)($ mid $<j \leq i+K-1)-\operatorname{sum}\left(F_{j}^{*} A_{j}\right)(i \leq j \leq m i d)+\left(K / 2 * A_{\text {mid }}(\right.$ if K is odd $\left.)\right)$
－For the next consecutive K friends A_{i+1} to $A_{i+k^{\prime}}$ ，we can make use of the previous cost
－All the calculations can be done by using two pointers
Time complexity：$O(N \log N)$

Full Solution 2

Subtask 6 （37\％）：No additional constraints

－Exhaust every consecutive K friends after sorting by their living positions
－If you know partial sum
－Let $\operatorname{sum} 1_{i}=\operatorname{sum}\left(A_{i}\right)(1 \leq i \leq N)$
－Let sum2 $2_{i}=\operatorname{sum}\left(A_{i} * i\right)(1 \leq i \leq N)$
－Let sum3 ${ }_{i}=\operatorname{sum}\left(A_{i} *(N-i+1)\right)(1 \leq i \leq N)$
－When choosing A_{i} to A_{i+K-1}
－Let $F_{i}=$ the number of friends in front of the $i^{\text {th }}$ friend
－Let mid $=i+(K+1) / 2-1$
－Total cost $=\operatorname{sum}\left(F_{j}^{*} A_{j}\right)($ mid $<j \leq i+K-1)-\operatorname{sum}\left(F_{j}^{*} A_{j}\right)(i \leq j \leq m i d)+\left(K / 2 * A_{\text {mid }}(\right.$ if K is odd $)$ ）， which can be calculated in $O(1)$ time by using the above partial sums
Time complexity：$O(N \log N)$

