S221 - Hotel Rankings

Fuzen Ng {yfng} 2022-01-29

S221 - Hotel Rankings

Background

Problem idea by Fuzen Ng Preparation by Fuzen Ng, Bryan Chung Figures by Christy Cheng

Problem Restatement

There are *N* hotels

Given *M* ratings, each gives an integer score of 1 to *K* to one of the *N* hotels

Define R_i = Rank of hotel i = 1 + number of hotels with total score larger than hotel i's score

Given a target ranking R'

Find the minimum number of new ratings needed to attain the ranking *R'*

Sample Input		Sample output
4 5 1 2 3 3 1 4 4 2 1 5 4 1	5 4 2	2
2 2 1 2 1 3 2 5	5	1

Statistics

Task	Attempts	Max	Mean	Std Dev
S221 - Hotel Rankings	75	100	51.52	41.082

Subtasks						
6: 67	7: 60	12: 49	17: 40	20: 31	13: 33	25: 29

First solved by dbselisonlee at 0:12:10

一日香港電腦奧林匹克競賽 Hong Kong Olympiad in Informatics

SUBTASKS

For all cases:

$$1 \leq N \leq 2 imes 10^5$$

$$0 \leq M \leq 2 \times 10^5$$

$$1 < K < 10^9$$

$$1 \leq R_i' \leq N$$
 for $1 \leq i \leq N$

$$1 \leq H_i \leq N$$
 for $1 \leq i \leq M$

$$1 \leq S_i \leq K$$
 for $1 \leq i \leq M$

Points Constraints

$$M = M = 2$$
 $R'_1 = 1, R'_2 = 2$

$$2 7 N=2, K=1$$

$$egin{aligned} 3 & 12 & 1 \leq N, M, K \leq 5000 \ R_i' = i ext{ for } 1 \leq i \leq N \ M = N, H_i = i ext{ for } 1 \leq i \leq M \end{aligned}$$

$$4 17 R'_i = i \text{ for } 1 \le i \le N$$

5 20
$$1 \le N, M, K \le 5000$$

6 13
$$M = 0$$

Subtask 1 (6%): N = M = 2, $R'_1 = 1$, $R'_2 = 2$

- Two ratings for two hotels
- $R'_1 = 1$
- Add new ratings for hotel 1 until its score is larger than hotel 2
- Or if-then-else
 - o answer must be 0 to 3

Sample Input 2	Sample output 2		
2 2 5 1 2 1 3 2 5	1		

Subtask 2 (7%): N = 2, K = 1

- Two hotels
- All ratings has a score of 1
- Count the number of ratings towards the two hotels
- If the ranking is matched
 - \circ answer = 0
- Else if the two hotels has the same ranking $(R'_1 = R'_2 = 1)$,
 - o answer = difference between the score of the hotels
- Else
 - o answer = difference between the score of the hotels + 1

```
Subtask 3 (12%): 1 \le N, M, K \le 5000, M = N, R'_{i} = i for 1 \le i \le N, H_{i} = i for 1 \le i \le M
```

- $R'_{i} = i$
 - Hotel 1 must have the highest score
 - Hotel 2 must have the second highest score
 - o ..
- Greedily add ratings from hotel N-1 to hotel 1
- Add minimum number of ratings and scores so that score of hotel i > score of hotel i+1
 - Add ratings with score K one by one
 - Change the last added score so that score of hotel i = (score of hotel i+1) + 1

Subtask 4 (17%): $R'_{i} = i \text{ for } 1 \le i \le N$

- R'_i = i
 Hotel 1 must have the highest score
 Hotel 2 must have the second highest score
- Greedily add ratings from hotel N-1 to hotel 1
- Add minimum number of ratings and scores so that score of hotel i > score of hotel i+1
 - Target score of hotel i = (score of hotel i+1) + 1
 - Number of ratings added = (target score 1) / K + 1
 - o O(1) for each hotel
- Time complexity: O(N)

Subtask 5 (20%): $1 \le N, M, K \le 5000$

- Any approaches with time complexity = O(N²)
 - Loops through the N hotels and looks for an unvisited hotel with the lowest ranking
 - Calculate the number of ratings needed in O(1)
 - Mark the hotel as visited
 - Repeat N times
 - Sort the hotels by their rankings
 - Add new ratings to the hotels one by one
- Handle hotels with the same rankings carefully
 - They must have the same score
 - Find the highest score among themselves
 - Compare the highest score with the previous score
 - Target score = max(highest score, previous score + 1)
 - each hotel needs to add a score of (target score score of hotel)

Subtask 6 (13%): M = 0

- Sort the rankings
- Set the scores of the hotels greedily such that the number of ratings needed is minimized
 - Score of the hotel(s) with the lowest ranking must be 0
 - Score of the hotel(s) with the second lowest ranking must be 1
 - 0 ...
- For each hotel, calculate the number of ratings needed for its score
 - \circ (Score 1) / K + 1

Full Solution

Subtask 7 (25%): No additional constraints

- Combine the two possible $O(N^2)$ solutions mentioned
- Sort the hotels by their rankings
- Start from the lowest ranking hotel(s)
- Handle hotels with the same rankings as mentioned
- Calculate the number of ratings needed for each hotel in O(1)
- Time complexity: O(N log N)

Sorting with Self-defined Conditions

- In this task, it is more convenient to sort the hotels by their rankings, then by their scores if their ranking is the same
- In c++, you may define boolean operators in struct besides using pairs

```
struct Hotel {
    int rank, hotel;
    long long sum;
    bool operator < (const Hotel &T) const {
        if (rank != T.rank) return rank < T.rank;
        return sum < T.sum;
    }
};</pre>
```