S221－Hotel Rankings

Fuzen Ng \｛yfng\} 2022－01－29

Background

Problem idea by Fuzen Ng

Preparation by Fuzen Ng，Bryan Chung

Figures by Christy Cheng

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Problem Restatement

There are N hotels
Given M ratings，each gives an integer score of 1 to K to one of the N hotels
Define $R_{i}=$ Rank of hotel $\mathrm{i}=1+$ number of hotels with total score larger than hotel i＇s score
Given a target ranking R^{\prime}
Find the minimum number of new ratings needed to attain the ranking R^{\prime}

Sample Input	Sample output	
4	5	5
1	2	4
3	2	2
3	3	
1	4	
4	2	
1	5	
4	1	
2	2	5
1	2	
1	3	
2	5	

S221-Hotel Rankings

Statistics

Task	Attempts	Max	Mean	Std Dev
S221 - Hotel Rankings	75	100	51.52	41.082

Subtasks

$6: 67$	$7: 60$	$12: 49$	$17: 40$	$20: 31$	$13: 33$	$25: 29$

First solved by dbselisonlee at 0:12:10

SUBTASKS

For all cases:
$1 \leq N \leq 2 \times 10^{5}$
$0 \leq M \leq 2 \times 10^{5}$
$1 \leq K \leq 10^{9}$
$1 \leq R_{i}^{\prime} \leq N$ for $1 \leq i \leq N$
$1 \leq H_{i} \leq N$ for $1 \leq i \leq M$
$1 \leq S_{i} \leq K$ for $1 \leq i \leq M$

Points Constraints

$$
N=M=2
$$

$$
R_{1}^{\prime}=1, R_{2}^{\prime}=2
$$

$$
1 \leq N, M, K \leq 5000
$$

$$
R_{i}^{\prime}=i \text { for } 1 \leq i \leq N
$$

$$
M=N, H_{i}=i \text { for } 1 \leq i \leq M
$$

4	17	$R_{i}^{\prime}=i$ for $1 \leq i \leq N$
5	20	$1 \leq N, M, K \leq 5000$
6	13	$M=0$
7	25	No additional constraints

S221－Hotel Rankings

Subtask 1

Subtask 1 （6\％）：$N=M=2, R_{1}^{\prime}=1, R_{2}^{\prime}=2$
－Two ratings for two hotels
－$R_{1}^{\prime}=1$
－Add new ratings for hotel 1 until its score is larger than hotel 2

Sample Input 2	Sample output 2	
2	2	5
1	2	1
1	3	
2	5	

－Or if－then－else
－answer must be 0 to 3

Subtask 2

Subtask 2 （7\％）：$N=2, K=1$
－Two hotels
－All ratings has a score of 1
－Count the number of ratings towards the two hotels
－If the ranking is matched
－answer＝ 0
－Else if the two hotels has the same ranking $\left(R_{1}^{\prime}=R_{2}^{\prime}=1\right)$ ，
－answer＝difference between the score of the hotels
－Else
－answer＝difference between the score of the hotels＋ 1

Subtask 3

Subtask 3 （12\％）： $1 \leq N, M, K \leq 5000, M=N$ ，

$$
R_{i}^{\prime}=\mathrm{i} \text { for } 1 \leq \mathrm{i} \leq N,
$$

$$
H_{i}^{\prime}=\mathrm{i} \text { for } 1 \leq \mathrm{i} \leq M
$$

－$R_{i}^{\prime}=\mathrm{i}$
－Hotel 1 must have the highest score
－Hotel 2 must have the second highest score
\circ
－Greedily add ratings from hotel $N-1$ to hotel 1
－Add minimum number of ratings and scores so that score of hotel $i>$ score of hotel $i+1$
－Add ratings with score K one by one
－Change the last added score so that score of hotel $\mathrm{i}=($ score of hotel $\mathrm{i}+1)+1$

Subtask 4

Subtask 4 （17\％）：$R_{i}^{\prime}=\mathrm{i}$ for $1 \leq \mathrm{i} \leq N$
－$R_{i}^{\prime}=\mathrm{i}$
－Hotel 1 must have the highest score
－Hotel 2 must have the second highest score
\circ
－Greedily add ratings from hotel N－1 to hotel 1
－Add minimum number of ratings and scores so that score of hotel $i>$ score of hotel $i+1$
－Target score of hotel $i=($ score of hotel $i+1)+1$
－Number of ratings added＝（target－score－1）／K＋1
－O（1）for each hotel
－Time complexity： $\mathrm{O}(N)$

Subtask 5

Subtask 5 （20\％）： $1 \leq N, M, K \leq 5000$
－Any approaches with time complexity $=\mathrm{O}\left(N^{2}\right)$
－Loops through the N hotels and looks for an unvisited hotel with the lowest ranking
－Calculate the number of ratings needed in $\mathrm{O}(1)$
－Mark the hotel as visited
－Repeat N times
－Sort the hotels by their rankings
－Add new ratings to the hotels one by one
－Handle hotels with the same rankings carefully
－They must have the same score
－Find the highest score among themselves
－Compare the highest score with the previous score
－Target score $=\max ($ highest score，previous score +1 ）
－each hotel needs to add a score of（target score－score of hotel）

Subtask 6

Subtask 6 （13\％）：$M=0$
－Sort the rankings
－Set the scores of the hotels greedily such that the number of ratings needed is minimized
－Score of the hotel（s）with the lowest ranking must be 0
－Score of the hotel（s）with the second lowest ranking must be 1
\circ
－For each hotel，calculate the number of ratings needed for its score
－（Score－1）／K＋1

Full Solution

Subtask 7 （25\％）：No additional constraints
－Combine the two possible $O\left(N^{2}\right)$ solutions mentioned
－Sort the hotels by their rankings
－Start from the lowest ranking hotel（s）
－Handle hotels with the same rankings as mentioned
－Calculate the number of ratings needed for each hotel in $\mathrm{O}(1)$
－Time complexity： $\mathrm{O}(N \log N)$

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Sorting with Self－defined Conditions

－In this task，it is more convenient to sort the hotels by their rankings，then by their scores if their ranking is the same
－In c＋＋，you may define boolean operators in struct besides using pairs

```
struct Hotel {
    int rank, hotel;
    long long sum;
    bool operator < (const Hotel &T) const {
        if (rank != T.rank) return rank < T.rank;
        return sum < T.sum;
    }
};
```

