J224－Digit Implant Strategy

Ethen Yuen \｛ethening\}

2022-01-29

Background

Problem Idea by ethening

Preparation by ethening，VCLH

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Problem Restatement

Given integers $\mathbf{S}, \mathbf{T}\left(1 \leq\right.$ length of $\left.S, T \leq 10^{\wedge} 6\right)$ ， and digit $\mathbf{x}(1 \leq x \leq 9)$

87663	8521
521	
8	

Insert x into T to construct T＇

Output T＇such that abs（S－T＇）is minimized

99000	98999
9999	
8	

E．g．$T=146, x=3$ ，
T＇can be $\underline{3} 146,1 \underline{3} 46,14 \underline{3} 6,146 \underline{3}$
If S is 1459 ，then 1463 should be outputted
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Statistics

0 points	$9+3+0+0=12$
6 points	$2+2+0+0=4$
11 points	$6+3+6+1=16$
17 points	$0+2+2+0=4$
23 points	$0+0+1+0=1$
29 points	$1+2+1+2=6$
40 points	$1+2+4+4=11$
100 points	$0+0+0+1=1$

First solved by cwong at 2 h 46 m 17s

SUBTASK

For all cases：

$1 \leq$ Length of S ，Length of $T \leq 10^{6}$
$1 \leq x \leq 9$

> Points Constraints
$26 \quad($ Length of $S)<($ Length of $T)+1$ x and the digits of S and T is either 3 or 7
$312($ Length of $S)>($ Length of $T)+1$ x and the digits of S and T can only be 3,5 ，or 7

4
$11 \quad($ Length of $S) \neq($ Length of $T)+1$
524 The first digits of S and T are different．
36 No additional constraints

Subtask 1

Subtask 1 （11\％）： $1 \leq$ Length of $\mathrm{S}, \mathrm{T} \leq 8$ ．
－The numbers are small enough to be stored using 32－bit integer．
－There are at most 9 possible T^{\prime} ．
－Exhaust all and find the T＇that achieved minimum difference．

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Insertion of digit

Suppose length of T is k ．
For discussion purpose，we denoted the different possible T＇by $\mathbf{T O}, \mathbf{T 1}, \ldots, \mathrm{Tk}$ ，where Ti is produced by inserting x before the i －th digit of T ． （Tk means inserting x after all digits）

$$
\begin{aligned}
& \text { E.g. } T=146, x=3, \\
& \text { Then } T O=\underline{3} 146, T 1=1 \underline{3} 46, T 2=14 \underline{3} 6, T 3=146 \underline{3}
\end{aligned}
$$

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 1

Subtask 1 （11\％）： $1 \leq$ Length of $\mathrm{S}, \mathrm{T} \leq 8$ ．
－Exhaust all and find the T＇that achieved minimum difference．
－Ti could be calculated by some integer division and modulo．

Score： 11

```
int pwr = 1000'000'000;
for (int i = 0; i <= 8; i++) {
    int l = T / pwr;
    int r = T % pwr;
    /* Ti = inserting x between l and r */
    int Ti = l * pwr * 10 + x * pwr + r;
    /* Update answer with Ti here */
    /* ... */
    pwr /= 10;
}
```


Subtask 2

Subtask 2 （6\％）：（Length of S）＜（Length of T ）+1 ， x and the digits of S and T is either 3 or 7
－Length of T＇always greater than S．
－Value of T＇always greater than S．
－To achieve minimum abs（S－T＇），we have to minimize T＇．（S is not important in this subtask）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 2

－To achieve minimum abs（S－T＇），we have to minimize T＇
－Let＇s observe：
e．g．$T=377373773737$
when $\mathrm{x}=3$ ，ans $=\underline{3} 377373773737$ ； when $\mathrm{x}=7$ ，ans $=377373773737 \underline{\underline{1}}$
e．g．$T=77777373$
when $\mathrm{x}=3$ ，ans $=\underline{3} 77777373$ ； when $\mathrm{x}=7$ ，ans $=77777373 \underline{7}$
It seems that we always want to insert 3 at front，and 7 at back．

Subtask 2

Subtask 2 （6\％）：（Length of S）＜（Length of T ）+1 ， x and the digits of S and T is either 3 or 7
－We always want to insert 3 at front，and 7 at back．
－This make sense since 3 is smallest digit in the number and should be put in front to minimize；similar argument for 7 ．

Subtask 2

Subtask 2 （6\％）：（Length of S）＜（Length of T ）+1 ， x and the digits of S and T is either 3 or 7
－Just print＇ 3 ＇$+\mathbf{T}$ for $\mathrm{x}=3$ and $\mathbf{T}+‘ 7$＇for $\mathrm{x}=7$ ．
－As S and T can be large，we would like to store them in C＋＋string． （array of int／array of char works fine，however we could use C＋＋string function to our advantages，which will be shown later）

Score： 6 （Cumulative：17）

Subtask 3

Subtask 3 （12\％）：（Length of S ）＞（Length of T）+1 ， x and the digits of S and T is either 3,5 ，or 7
－Opposite to Subtask 2，this time we have to maximize T．
－We always want to insert 3 at back，and 7 at front．What about 5？

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 3

－To achieve minimum abs（S－T＇），we have to maximize T＇
－Let＇s observe when $x=5$ ：
o e．g．$T=77777373$ ，ans $=77777 \underline{5} 373$
－e．g．$T=55575535$ ，ans $=555755 \underline{5} 35$
－e．g．$T=577575755$ ，ans $=577575755 \underline{5}$
－Some rules can be concluded from these：
－We never want to insert 5 in front of 7，because inserting after that 7 would always yield a larger number；insert 5 in front of another 5 is the same as inserting after；
－Inserting 5 in front of a 3 always yield a larger number than inserting after that 3.

Subtask 3

－We would insert 5 in front of the first occurrence of 3；if no 3＇s are present in the number，insert 5 at the back．
－If the inserted x is followed by 5 ，or 7 ，there are always a larger alternative．
－Why should it be inserted in front of first occurrence of 3？
－e．g．T＝ 575535337
Inserting right before first occurrence of 3：5755535337
Inserting after first occurrence of 3：57553xxxxx（must be smaller）

Subtask 3

Subtask 3 （12\％）：（Length of S）＞（Length of T）＋ 1 ， x and the digits of S and T is either 3,5 ，or 7
－We always want to insert 3 at back，and 7 at front．
－We would insert 5 in front of the first occurrence of 3 （or at the back）．
－If first occurrence of 3 is the \mathbf{i}－th digit of \mathbf{T} ，the answer would be $\mathbf{~ T i}$ ．

Subtask 3

Subtask 3 （12\％）：（Length of S）＞（Length of T）＋1，
x and the digits of S and T is either 3,5 ， or 7

```
/* Inserting x before the i-th digit of T*/
string Ti = T;
Ti.insert(i, x);
```

－We always want to insert 3 at back，and 7 at front．
－For $x=5$ ，if first occurrence of 3 is the \mathbf{i}－th digit of \mathbf{T} ，the answer would be Ti（or Tk if there are no 3）．
－Ti can be constructed either by looping manually or with insert function．
Score： 12 （Cumulative：29）

Subtask 4

Subtask 4 （11\％）：（Length of S ）$\neq($ Length of $T)+1$ ，
－We have to combine Subtask 2 and 3 ideas and generalize it to tackle general S，T（without digits constrained to be some particular values）．
－Let＇s tackle the case where（Length of S）＞（Length of T）＋ 1 first：
－In Subtask 3，we would insert 5 in front of the first occurrence of 3，because it give us the largest number．

Subtask 4

$$
\text { Subtask } 4 \text { (11\%): (Length of S) } \neq(\text { Length of } T)+1,
$$

－Let＇s tackle the case where（Length of S$)>($ Length of T$)+1$ first：
－In Subtask 3，we would insert 5 in front of the first occurrence of 3，because it give us the largest number．We should insert x in front of the first occurrence of y（where $\mathbf{y}<\mathbf{x}$ ）for getting the largest number．
－Suppose $\mathbf{T}=$ abcdeyqrstu．．．（abcde are digits $\geq x$ ） Inserting right before y ：abcdexyqrstu．．．

Inserting after y：abcdey．．．（must be smaller）
（ $y \leq x$ ）does not work for case like $T=573, x=5$ ，where the optimal answer is $57 \underline{5} 3$ ．

Subtask 4

Subtask 4 （11\％）：（Length of S ）$\neq($ Length of $T)+1$ ，
－For $($ Length of $S)>($ Length of $T)+1$ ：
－We should insert x in front of the first occurrence of y（where $y<x$ ）
－For（Length of S$)<($ Length of T$)+1$ ：
－We should insert x in front of the first occurrence of y（where $y>x$ ）
Score： 29 （Cumulative：40）

Remember to handle cases where all the digits are $\geq x / \leq x$

Subtask 5

Subtask 5 （24\％）：The first digits of S and T are different．
－You should have noticed now，the real challenge of the problem is when T＇is in equal length with S ．
－For when the lengths are not equal，just run the solution of Subtask 4.
－What is so special about the first digits of S and T？？？

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 5

Subtask 5 （24\％）：The first digits of S and T are different．
－Let＇s suppose $\mathrm{S}[0]=$＇ 7 ’， $\mathrm{T}[0]=$＇ 3 ’．
－If we are inserting x at any position other than at the front，
－ S would be 7abc．．．．．．def，and T＇would be 3qxas．．．tuv，where S and T ＇are equal length．
－ S must be larger than T＇since the first digit is larger．
－We want to maximize T＇to minimize abs（S $\left.-\mathbf{T}^{\prime}\right)$ ．\leftarrow Same as Subtask 4
－Useful problem－solving technique：Reduce to known problem

Subtask 5

Subtask 5 （24\％）：The first digits of S and T are different．
－Let＇s suppose S［0］＞T［0］．
－Case 1：we are inserting x at any position other than at the front，
－We want to maximize T＇using Subtask 4 idea，let＇s suppose the result is $\mathbf{~ T a}$
－Case 2：we are inserting x at the front（TO）．
－We only have two candidate answers，Ta and T0．
－Just compare abs（S－Ta）and abs（S－TO），to see which is smaller．

Subtask 5

－Compare abs（S－Ta）and abs（S－TO），to see which is smaller．
－We need to do High Precision Arithmetic（HPA）manually，using string for big number．
－Luckily，S and T＇are of same length which makes it a bit less complicated．
－We only need to implement two functions：one for comparing two big numbers，one for calculating the difference between two big numbers．
－Plan is：Compare S \＆Ta and subtract the smaller one from the bigger one；Do the same for S \＆TO．

Then compare the two differences to see which is smaller．

Subtask 5

```
// return true if x >= y, suppose x and y are of
same length
bool cmp(const string& x, const string& y) {
    int len = x.length();
    for (int i = 0; i < len; i++) {
        if (x[i] > y[i]) return 1;
        if (x[i] < y[i]) return 0;
    }
    return 1;
}
```

C＋＋have built－in lexicographical comparator with string，which you could use in this scenario（because x and y are of same length）． Basically do return $\mathrm{x}>=\mathrm{y}$ ；

```
// return x - y, given x >= y and they are of same
length
string subtract(string x, string y) {
    int len = x.length();
    for (int i = len - 1; i >= 0; i--) {
        x[i] -= (y[i] - '0');
        if (x[i] < '0') {
            x[i] += 10;
            --x[i - 1];
        }
    }
    return x;
}
```


Subtask 5

Subtask 5 （24\％）：The first digits of S and T are different．
－We have handled S［0］＞T［0］．
－For $\mathrm{S}[0]$＜T［0］，the only difference is that you should try to minimize Ta．
Score： 24 （Cumulative：64）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

Subtask 6 （36\％）：No additional constraints．
－What about the case where there is a common prefix of S and T ？
－e．g．$S=3141539897, T=\underline{314155091, ~} x=2$
－Could we just ignore the prefix and perform Subtask 5 solution？
－$\quad \mathrm{Ta}=3141550 \underline{2} 91 \leftarrow$ Optimal T＇that you could get inserting after＇5＇．
－\quad Tb $=31415 \underline{2} 5091 \leftarrow$ Similar to T0 in Subtask 5
－In most cases，this will give you the optimal answer．By ignoring the prefix，it will eliminate itself in abs（ $\mathrm{S}-\mathrm{T}^{\prime}$ ）and yield a small difference．

Full Solution

－In most cases，this will give you the optimal answer．
－There are some cases that will mess this up，one of them are given to you in the samples．

99000	98999
9999	
8	

－$\quad \mathrm{Ta}=99989, \mathrm{abs}(\mathrm{S}-\mathrm{Ta})=989$
－ $\mathrm{Tb}=99899, \operatorname{abs}(\mathrm{~S}-\mathrm{Tb})=899$
－Topt $=9 \underline{8} 999, \operatorname{abs}(\mathbf{S}-\mathrm{Topt})=\mathbf{1}$

Full Solution

－Case 1：Inserting x after the prefix．
－Reduce to only 2 candidates to try by Subtask 5.
－Case 2：Inserting x in between／before the prefix．
－Try all possibilities？Would let to TLE．
－Can we reduce the candidates as well？Most insertion seems would make abs（S－T’）a lot bigger，especially if x is inserted in relatively front．

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Reforming the Problem

－Let＇s study the problem statement again．
－＂Output \mathbf{T}＇such that abs（ \mathbf{S}－ \mathbf{T}^{\prime} ）is minimized＂

Reforming the Problem

－＂Output \mathbf{T}＇such that abs（ \mathbf{S}－ \mathbf{T}^{\prime} ）is minimized＂
－Find the minimum T^{\prime} that $\mathrm{T}^{\prime} \geq \mathbf{S}$ \＆\＆
－Find the maximum T^{\prime} that $\mathrm{T}^{\prime} \leq \mathrm{S}$ ．
－Then take the one that yields a smaller absolute difference．

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

－Case 1：Inserting x after the prefix．
－Reduce to only 2 candidates to try by Subtask 5.
－Case 2：Inserting x in between／before the prefix．
－Find the minimum T^{\prime} that $T^{\prime}>S$ ，we denoted that by Tc
－Find the maximum T^{\prime} that $\mathrm{T}^{\prime}<\mathrm{S}$ ，we denoted that by Td
（The T＇＝S part must be handled by Case 1）
－How？

Full Solution

－e．g．$S=614152 \mathrm{abc}, \mathrm{T}=614152 \mathrm{qrs}, \mathrm{x}=4$
－And we only consider inserting in the prefix part

4614152qrs．．．	Inserting before 6	$<\mathrm{S}$
6414152qrs．．．	Inserting before 1	$>\mathrm{S}$
6144152qrs．．．	Inserting before 4	We could always ignore inserting x before the same digit， because it is actually the same number as below
6144152qrs．．．	Inserting before 1	$>\mathrm{S}$
6141452qrs．．．	Inserting before 5	$<\mathrm{S}$
6141542qrs．．．	Inserting before 2	$>\mathrm{S}$

Full Solution

－Inserting x before $\mathrm{y}(\mathrm{y}<\mathrm{x})$ would make T＇＞S

6414152qrs．．．	Inserting before 1	$>S$

－Inserting x before $z(z>x)$ would make $T^{\prime}<S$

4614152qrs．．．	Inserting before 6	$<S$

－Because the part prior to the insertion is the same for S and T^{\prime} ．While the most significant digit that is different is the insertion position（ x and the original digit there）．

Full Solution

－Inserting x before $\mathrm{y}(\mathrm{y}<\mathrm{x})$ would make T＇＞S

6414152qrs．．．	Inserting before 1	$>S$
6144152qrs．．．	Inserting before 1	$>S$
6141542qrs．．．	Inserting before 2	$>S$

－Inserting x before the last occurence of y（that $y<x$ ）would yield the minimum T^{\prime} ．（The Tc that we are looking for！）
－The reason of this should be easy to seen from the aligned numbers from the above table．

Full Solution

－Case 1：Inserting x after the prefix．
－Fixed the first different digit，and perform Subtask 5 solution to get Ta．
－Insert x right after prefix to get Tb．
－Case 2：Inserting x in between／before the prefix．
－Find the minimum T＇that T＇$>\mathrm{S}(\mathrm{Tc})$ ．
－Inserting x before the last occurence of $y(t h a t ~ y<x)$ would yield the minimum T＇．
－Find the maximum T^{\prime} that $\mathrm{T}^{\prime}<\mathrm{S}(\mathrm{Td})$ ．
－Inserting x before the last occurence of $y($ that $y>x$ ）would yield the maximum T＇．

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

Subtask 6 （36\％）：No additional constraints．
－e．g．$S=\underline{3141539897, ~} T=\underline{314155091, ~} x=2$
－ $\mathrm{Ta}=3141550 \underline{2} 91$
－ $\mathrm{Tb}=31415 \underline{2} 5091$
－ $\mathrm{Tc}=314 \underline{2} 155091$
－$T d=3141 \underline{2} 55091$
－Calculate all of $\operatorname{abs}(\mathbf{S}-\mathbf{T}\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\})$ and output the one who achieve the smallest difference．

Score： 100

HhCe

Aftermath

The full solution considers four candidates：
－Insert some position after common prefix Ta （a＞b）
－Insert \times right after common prefix to get $\mathbf{T b}$ ．
－Find the minimum T＇such that T＇$>\mathrm{S}$
－Find the maximum T^{\prime} such that $T^{\prime}<S$

Tc（c＜b）
Td（d＜b）

Aftermath

The full solution considers four candidates：
－Insert some position after common prefix Ta （a＞b）
－Insert x right after common prefix to get Tb ．
－Find the minimum T＇such that T＇＞S Tc（c＜b）
－Find the maximum T^{\prime} such that $T^{\prime}<S \quad T d(d<b)$
$\Rightarrow 1$ ．You can reduce the no．of candidates from 4 to 3 ．

Aftermath

The full solution considers four candidates：
－Insert some position after common prefix Ta （a＞b）
－Insert x right after common prefix to get Tb ．
－Find the minimum T＇such that T＇$>S$
－Find the maximum T^{\prime} such that $T^{\prime}<S$
Tc（c＜b）
only if Tb ＜S
Td（d＜b）only if Tb＞S
$\Rightarrow 1$ ．You can reduce the no．of candidates from 4 to 3 ．

Aftermath

The full solution considers four candidates：
－Insert some position after common prefix Ta （a＞b）
－Insert \times right after common prefix to get $\mathbf{T b}$ ．
－Find the minimum T＇such that T＇＞S
－Find the maximum T^{\prime} such that $\mathrm{T}^{\prime}<\mathrm{S}$

Tc（c＜b）
only if Tb ＜S
Td（d＜b）only if Tb $>$ S
$\Rightarrow 1$ ．You can reduce the no．of candidates from 4 to 3 ．
$\Rightarrow 2$ ．There isn＇t much choice for \mathbf{c} / \mathbf{d} ．In fact we only need to consider 1 ．

Aftermath

The full solution considers four candidates：
－Insert some position after common prefix Ta （a＞b）
－Insert x right after common prefix to get $\mathbf{T b}$ ．
－Insert x into common prefix
T（b－1）
$\Rightarrow 1$ ．You can reduce the no．of candidates from 4 to 3 ．
$\Rightarrow 2$ ．There isn＇t much choice for $\mathbf{c / d}$ ．In fact we only need to consider 1．（Why？）

