J223 - Ice Cream

David Wai {wjx} 2022-01-29

Background

Problem idea by David Wai Preparation by Brian Lee, Daniel Yeh

Problem Restatement

Given S_1 1-dollar coins, S_2 2-dollar coins, and S_5 5-dollar coins

The price of each scoop is X_A and X_B at shop A and shop B respectively

You can choose to go to which shop first and the set of coins to pay

Let *N* = number of shops you need to get change from

Your task is to minimize *N* and output the construction

	Sample Input	Sample output
t	0 5 2 10 6	Possible 0 B 0 0 2 0 3 0
	0 5 2 10 7	Possible 1 B 0 3 1 0 1 1
	0 5 2 10 11	Impossible

Comple Input | Comple output

Statistics

Task	Attempts	Max	Mean	Std Dev
J223 - Ice Cream	75	100	11.813	16.831

Subtasks

3: 67	17: 9	17: 14	7: 34	26: 1	30: 1
3, 07	17.3	17.14	(X) 240	20. 1	50.1

First solved by dbsboscowang at 2:59:35

SUBTASKS

For all cases: $0 \leq S_1, S_2, S_5, X_A, X_B \leq 10^8$

Points Constraints

1 3
$$S_2 = S_5 = 0$$

$$2 17 S_2 = 0$$

$$3 17 S_5 = 0$$

$$4 7 S_1 = S_2 = S_5 = 10^8$$

5 26
$$0 \le S_1, S_2, S_5, X_A, X_B \le 500$$

Subtask 1 (3%): $S_2 = S_5 = 0$

- Only 1-dollar coins
- \bullet N=0
- Check if $S_1 \ge X_A + X_B$
 - If yes, give X_A coins to shop A and X_B coins to shop B
 - Otherwise, output "Impossible"

Subtask 4 (7%):
$$S_1 = S_2 = S_5 = 10^8$$

- The answer is always possible since $0 \le X_A$, $X_B \le 10^8$
- \bullet N=0
- There are many ways to do this subtask
- One of the easiest ways is to reserve 1 1-dollar coin for the shops with odd-number price, then use 2-dollar coins to pay the remaining price
- $S_2 * 2 \ge X_A + X_B$, 2-dollar coins are always enough

Subtask 3 (17%): $S_5 = 0$

Only 1-dollar coins and 2-dollar coins

We can divide the problem into the following 3 cases:

- 1. Both X_A and X_B are even numbers, same as subtask 1 (N = 0)
- 2. One of X_A and X_R is an odd number
 - 2.1. Assume that X_A is odd
 - 2.2. If $S_1 = 0$, then we need to get change from shop A (N = 1)
 - 2.3. Otherwise, give 1 1-dollar coin to shop A, go to case 1 (N = 0)
- 3. Both X_A and X_B are odd numbers
 - 3.1. If $S_1 = 0$, give $(X_A + 1)$ 2-dollar coins to shop A and receive 1 1-dollar coin, go to 2.3 (N = 1)
 - 3.2. If $S_1 = 1$, give the 1-dollar coin to shop A, go to 2.2 (N = 1)
 - 3.3. Otherwise, **reserve** 1 1-dollar coin for each shop, go to case 1 (N = 0)

Subtask 2 (17%): $S_2 = 0$

- Only 1-dollar coins and 5-dollar coins
- It is always better if we use 1 5-dollar coin instead of 5 1-dollar coins
- Exhaust go to which shop first
 - For the first visited shop
 - Use as many 5-dollar coins as possible, then try to use 1-dollar coins to fill the remaining price
 - If 1-dollar coins are not enough, instead of using 1-dollar coins, just simply add 1 5-dollar coin and get change from the shop (*N* increases by 1)
 - Use a similar greedy approach for the second visited shop
 - There may be some 2-dollar coins when visiting the second shop
 - Use 5-dollar coins first, followed by 2-dollar coins, at last 1-dollar coins

Greedy Solution

- The subtask 2 solution can be extended to a more general greedy solution
- Exhaust go to which shop first, then greedy give coins in the 5 \rightarrow 2 \rightarrow 1 order

In fact, this greedy solution can pass subtasks 1-4, which can get 44 points

Subtask 5 (26%): $0 \le S_1$, S_2 , S_5 , X_A , $X_B \le 500$

- Exhaust go to which shop first
- Exhaust how many 1-dollar coins, 2-dollar coins and 5-dollar coins to use in the first shop
- Use the greedy approach to pay to the second shop

Time complexity: $O(S_1S_2S_3)$

Full Solution

Subtask 6 (30%): No additional constraints

- The greedy approach has some problem
- It is because 5-dollar coins cannot totally replace 2-dollar coins
 - For example, we should use 3 2-dollar coins instead of 1 5-dollar coin and 1 2-dollar coin so we don't need to get change
 - Special handle this case in the greedy approach
- Also, we need to ensure that we have enough 1-dollar or 5-dollar coins to pay for the second shop if the price of the second shop is an odd number
 - Try to reserve some 5-dollar coins, followed by 1-dollar coins to change the price of each shop to an even number

Full Solution 2

Subtask 6 (30%): No additional constraints

- The greedy approach has some problem
- It is because 5-dollar coins cannot totally replace 2-dollar coins
- Also, we need to ensure that we have enough 1-dollar or 5-dollar coins to pay for the second shop if the price of the second shop is an odd number
- You may also combine the subtask 5 solution with the greedy approach
 - Exhaust to reserve how many 1-dollar coins, 2-dollar coins and 5-dollar coins for the first shop (bounded by a small number, like 500 or even 10)
 - Do the greedy approach

Tips On Implementation

• The time complexity of the full solution is *O*(1)

 You may use some C++ STL features to simplify your code although it needs more time

```
const vector coins{5, 2, 1};
vector<int> pay(int x, vector<int>& s) {
    vector used{0, 0, 0};
    for (int i = 0; i < 3; i++) {
        int num = min(s[i], x / coins[i]);
        s[i] -= num;
        used[i] += num;
        x -= num * coins[i];
    return used;
```