J222 - Spicy Ramen

Ethen Yuen {ethening} 2022-01-29

J222 - Spicy Ramen

Background

Problem Idea by ethening
Preparation by ethening, christycty

Problem Restatement

Given N + M inequalities

- $x \ge A1, x \ge A2, ..., x \ge AN$
- $x \le B1, x \le B2, ..., x \le BM$

Find the number of integers in the range [0, R] that satisfies at least K inequalities.

2 2 3 70	27
30 50	
40 65	

4 2 6 50	16
25 20 0 10	
50 40	

3 3 4 100	0
41 71 89	
0 23 53	

Statistics

0 points
$$15 + 4 + 0 + 0 = 19$$

14 points
$$1 + 4 + 1 + 0 = 6$$

31 points
$$6 + 6 + 5 + 0 = 17$$

56 points
$$0 + 5 + 5 + 0 = 10$$

100 points
$$0 + 1 + 3 + 8 = 12$$

First solved by cwong at 23m 43s

一片(香港電腦奧林匹克競賽 Hong Kong Olympiad in Informatics

SUBTASK

For all cases:

$$1 \le N, M \le 2 \times 10^5$$

$$1 < K \le N + M$$

$$1 < R \le 10^9$$

$$0 \leq A_i, B_i \leq R$$

Points Constraints

1 14
$$N=2, M=2, 3 \le K \le 4$$

 $1 \le R \le 3000$

3 25
$$1 \le R \le 10^6$$

$$4 17 M = 2, K = N + M - 1$$

Subtask 1 (14%): N = M = 2, $3 \le K \le 4$, $1 \le R \le 3000$.

- N, M, K are small enough to solve by doing some careful case handling.
- Suppose A1 ≤ A2 && B1 ≤ B2.

• Suppose A1 \leq A2 && B1 \leq B2. **K** = **4**.

• If $A2 \le B1$, ans = B1 - A2 + 1; Else ans = 0.

Suppose A1 ≤ A2 && B1 ≤ B2. K = 3.

If A2 ≤ B1, ans = B2 - A1 + 1;
 Else, separate handle
 [A1, B1] && [A2, B2].

Subtask 1 (14%): N = M = 2, $3 \le K \le 4$, $1 \le R \le 3000$.

- N, M, K are small enough to solve by doing some careful case handling.
- After writing some ifs and doing some calculations...

Score: 14

Time Complexity: O(1)

Subtask 2 (17%): $1 \le N$, $M \le 1000$, $1 \le R \le 3000$.

- N, M, R are small.
 - We could naively **try every x** in range [0, R], **test all N + M inequalities** against it.
 - Another way is to open a counting array of [O, R]. For each inequality, loop through value that satisfy it and +1 to the counting array.
- Count those x that satisfy ≥ K inequalities.

• Open a counting array of [O, R]. For each inequality, loop through value that satisfy it and +1 to the counting array.

N=4 M=2 K=6 R=5 A={2 2 0 1} B={5 4}

C[0]	C[1]	C[2]	C[3]	C[4]	C[5]	
0	0	0	0	0	0	
0	0	1	1	1	1	
0	0	2	2	2	2	
\						

Subtask 2 (17%): $1 \le N$, $M \le 1000$, $1 \le R \le 3000$.

- N, M, R are small.
 - We could naively try every x in range [0, R], test all N + M inequalities against it.
 - Another way is to open a counting array of [O, R]. For each inequality, loop through value that satisfy it and +1 to the counting array.
- Count those x that satisfy ≥ K inequalities.

Score: 31

Time Complexity: O(R * (N + M))

Subtask 3 (25%): $1 \le R \le 10^6$.

- Naively looping through value of x would lead to TLE.
- There exist faster way of update an array in range:
 - Optimize by using **Difference Array**.
 - o Refer to the "Optimization and Common Tricks" lesson
- For increasing A[L..R] by 1,we could increase D[L] by 1 and decrease D[R
 - + 1] by 1. At last, sum them up to get the final value.

• Open a differences array of [0, R + 1]. For each inequality $1 \le x \le r$, add 1 to D[L], subtract 1 to D[R + 1].

N=4 M=2 K=6 R=5 A={2 2 0 1} B={5 4}

D[0]	D[1]	D[2]	D[3]	D[4]	D[5]	D[6]
0	0	0	0	0	0	0
0	0	1	0	0	0	-1
0	0	2	0	0	0	-2
<u> </u>						

Subtask 3 (25%): $1 \le R \le 10^6$.

- At last, sum them up to get the final value.
- Count those x that $C[x] \ge K$.

Score: 56

Time Complexity: O(N + M + R)

Subtask 4 (17%): M = 2, K = N + M - 1.

- A more complicated Subtask 1.
- The order of inequalities does not affect the result. Let's sort them for easier processing, i.e. $A1 \le A2 \le ... \le AN$, $B2 \le B1$. (Notice that B is in reverse)

Subtask 4 (17%): M = 2, K = N + M - 1.

• If $AN \le B2$, ans = B1 - A{N-1} + 1; Else, separate handle [A{N-1}, B2] && [AN, B1].

Score: 17 (Cumulative: 73)

Time Complexity: O(N Ig N + M Ig M)

Full Solution

Subtask 5 (27%): No additional constraints.

- Let A be sorted in ascending order, B be sorted in descending order.
- Notice in Subtask 4, we group [A{N-2}, B2] && [AN, B1] together.
- For $x \ge Ai$, if x is counted in the answer, $x \le B(K i)$.
 - For convenience sake, we let A0 be 0, and B0 be R.
 - We could just do **Set Union** on **[A0, BK]**, **[A1, B{K-1}]**, ..., **[AN, B{K N}]** (so that we won't double count overlapping interval) and the answer is the size of unioned set.

Full Solution

- We could just do **Set Union** on **[A0, BK]**, **[A1, B{K-1}]**, ..., **[AN, B{K-N}]** and the answer is the size of unioned set.
 - o e.g. Union of [3, 10], [5, 14], [16, 17], [21, 25], [18, 26] is [3, 14], [16, 26].
 - \circ Size of the union set is (14 3 + 1) + (26 16 + 1) = 23.
- The Set Union is less complicated because A0 ≤ A1 ≤ ... ≤ AN.
 - Just maintain the current interval right-bound and try to merge the next interval into it.
- Discard invalid interval where the right-bound < left-bound, also end the loop early if K-N becomes negative.

Full Solution

- We could just do Set Union on [AO, BK], [A1, B{K-1}], ..., [A{min(K, N)}, BO]
 and the answer is the size of unioned set.
- Alternatively, start with interval [AO, A1 1], [A1, A2 1], ..., [A{min(K, N)}, R]. Update first interval with \leq Bk, second with \leq B{k 1}, and so on. (basically start with disjoint interval at first so no union is needed).

Score: 100

Time Complexity: O(N Ig N + M Ig M)