J222－Spicy Ramen

Ethen Yuen \｛ethening\} 2022－01－29

Background

Problem Idea by ethening

Preparation by ethening，christycty

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

J222－Spicy Ramen

Problem Restatement

Given $N+M$ inequalities
－$x \geq A 1, x \geq A 2, \ldots, x \geq A N$
－$x \leq B 1, x \leq B 2, \ldots, x \leq B M$
Find the number of integers in the range［0， R ］that satisfies at least K inequalities．

2	2	3	70
30	50	27	
40	65		

4	2	6	50	16
25	20	0	10	
50	40			

3	3	4	100	0
41	71	89		
0	23	53		

Statistics

0 points	$15+4+0+0=19$
14 points	$1+4+1+0=6$
31 points	$6+6+5+0=17$
56 points	$0+5+5+0=10$
100 points	$0+1+3+8=12$
First solved by cwong at 23 m 43	

Subtask 1

Subtask 1 （14\％）：$N=M=2,3 \leq K \leq 4,1 \leq R \leq 3000$ ．
－N, M, K are small enough to solve by doing some careful case handling．
－Suppose $A 1 \leq A 2$ \＆\＆$B 1 \leq B 2$ ．

Subtask 1

－Suppose $A 1 \leq A 2 \& \& B 1 \leq B 2 . K=4$ ．

－If $\mathrm{A} 2 \leq \mathrm{B} 1$ ，ans $=\mathrm{B} 1-\mathrm{A} 2+1$ ；Else ans $=0$ ．

Subtask 1

－Suppose $A 1 \leq A 2 \& \& B 1 \leq B 2 . K=3$ ．

－If $\mathrm{A} 2 \leq \mathrm{B} 1$ ，ans $=\mathrm{B} 2-\mathrm{A} 1+1$ ；
Else，separate handle
$[A 1, B 1] \& \&[A 2, B 2]$ ．

Subtask 1

Subtask 1 （14\％）：$N=M=2,3 \leq K \leq 4,1 \leq R \leq 3000$.
－N, M, K are small enough to solve by doing some careful case handling．
－After writing some ifs and doing some calculations．．．
Score： 14
Time Complexity：O（1）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 2

Subtask 2 （17\％）： $1 \leq N, M \leq 1000,1 \leq R \leq 3000$ ．
－ $\mathrm{N}, \mathrm{M}, \mathrm{R}$ are small．
－We could naively try every \mathbf{x} in range $[0, R]$ ，test all $\mathbf{N}+\mathbf{M}$ inequalities against it．
－Another way is to open a counting array of［0，R］．For each inequality，loop through value that satisfy it and $\mathbf{+ 1}$ to the counting array．
－Count those x that satisfy $\geq K$ inequalities．

Subtask 2

－Open a counting array of $[0, R]$ ．For each inequality，loop through value that satisfy it and $\mathbf{+ 1}$ to the counting array．

$$
\begin{aligned}
& N=4 \quad M=2 \quad K=6 \quad R=5 \\
& A=\left\{\begin{array}{lll}
2 & 2 & 0
\end{array}\right\} \\
& B=\left\{\begin{array}{lll}
5 & 4
\end{array}\right\}
\end{aligned}
$$

	$\mathrm{C}[1]$	C［2］C［3］			c［5］
1	1	3	3	3	3
1	2	4	4	4	4
2	3	5	5	5	5
3	4	$\underline{6}$	$\underline{6}$	$\underline{6}$	5

Subtask 2

Subtask 2 （17\％）： $1 \leq N, M \leq 1000,1 \leq R \leq 3000$ ．
－ $\mathrm{N}, \mathrm{M}, \mathrm{R}$ are small．
－We could naively try every \mathbf{x} in range $[0, R]$ ，test all $\mathbf{N}+\mathbf{M}$ inequalities against it．
－Another way is to open a counting array of $[0, R]$ ．For each inequality，loop through value that satisfy it and $+\mathbf{1}$ to the counting array．
－Count those x that satisfy $\geq K$ inequalities．
Score： 31
Time Complexity： $\mathrm{O}\left(\mathrm{R}^{*}(\mathrm{~N}+\mathrm{M})\right.$ ）

Hice
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 3

Subtask 3 （25\％）： $1 \leq R \leq 10^{\wedge} 6$ ．
－Naively looping through value of x would lead to TLE．
－There exist faster way of update an array in range：
－Optimize by using Difference Array．
－Refer to the＂Optimization and Common Tricks＂lesson
－For increasing $A[L . . R]$ by 1 ，we could increase $D[L]$ by 1 and decrease $D[R$ +1 ］by 1．At last，sum them up to get the final value．

Subtask 3

－Open a differences array of $[0, R+1]$ ．For each inequality $l \leq x \leq r$ ， add 1 to $D[L]$ ，subtract 1 to $D[R+1]$ ．

$$
\begin{aligned}
& \mathrm{N}=4 \quad \mathrm{M}=2 \quad \mathrm{~K}=6 \quad \mathrm{R}=5 \\
& \mathrm{~A}=\left\{\begin{array}{llll}
2 & 2 & 0 & 1
\end{array}\right\} \\
& \mathrm{B}=\left\{\begin{array}{lll}
5 & 4
\end{array}\right\}
\end{aligned}
$$

$$
\begin{array}{lllllll}
D[0] & D[1] & D[2] & D[3] & D[4] & D[5] & D[6]
\end{array}
$$

0	0	0	0	0	0	0

0	0	1	0	0	0	-1

0	0	2	0	0	0	-2

$\mathrm{D}[0] \quad \mathrm{D}[1] \quad \mathrm{D}[2] \quad \mathrm{D}[3] \quad \mathrm{D}[4] \quad \mathrm{D}[5] \quad \mathrm{D}[6]$

1	0	2	0	0	0	-3

1	1	2	0	0	0	-4

3	1	2	0	0	-1	-5

Subtask 3

Subtask 3 （25\％）： $1 \leq R \leq 10^{\wedge} 6$ ．

$$
\begin{aligned}
& N=4 \quad M=2 \quad K=6 \quad R=5 \\
& A=\left\{\begin{array}{lll}
2 & 2 & 0
\end{array}\right\} \\
& B=\left\{\begin{array}{lll}
5 & 4
\end{array}\right\}
\end{aligned}
$$

－At last，sum them up to get the final value．
$\mathrm{D}[0] \quad \mathrm{D}[1] \quad \mathrm{D}[2] \quad \mathrm{D}[3] \quad \mathrm{D}[4] \quad \mathrm{D}[5] \quad \mathrm{D}[6]$
－Count those x that $C[x] \geq K$ ．

3	1	2	0	0	-1	-5

Score： 56
Time Complexity： $\mathrm{O}(\mathrm{N}+\mathrm{M}+\mathrm{R})$

$\mathrm{C}[0]$							$\mathrm{C}[1]$	$\mathrm{C}[2]$	$\mathrm{C}[3]$	$\mathrm{C}[4]$	$\mathrm{C}[5]$							
0													3	4	$\underline{\mathbf{6}}$	$\underline{\mathbf{6}}$	$\underline{\mathbf{6}}$	5
:---:	:---:	:---:	:---:	:---:	:---:													

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 4

Subtask 4 （17\％）：$M=2, K=N+M-1$.
－A more complicated Subtask 1.
－The order of inequalities does not affect the result．Let＇s sort them for easier processing，i．e． $\mathrm{A} 1 \leq \mathrm{A} 2 \leq \ldots \leq \mathrm{AN}, \mathrm{B} 2 \leq \mathrm{B} 1$ ．（Notice that B is in reverse）

Subtask 4

－Subtask 4 （17\％）：$M=2, K=N+M-1$ ．

－If $A N \leq B 2$ ，ans $=B 1-A\{N-1\}+1$ ；Else，separate handle $[A\{N-1\}, B 2]$ \＆\＆［AN，B1］．
Score： 17 （Cumulative：73）
Time Complexity： $\mathrm{O}(\mathrm{N} \operatorname{Ig} \mathrm{N}+\mathrm{M} \operatorname{Ig} \mathrm{M})$

Full Solution

Subtask 5 （27\％）：No additional constraints．
－Let A be sorted in ascending order，B be sorted in descending order．
－Notice in Subtask 4，we group［A\｛N－2\}, B2] \&\& [AN, B1] together.
－For $\mathbf{x} \geq \mathbf{A i}$ ，if x is counted in the answer， $\mathbf{x} \leq \mathbf{B}\{\mathrm{K}-\mathrm{i}\}$ ．
－For convenience sake，we let $\mathbf{A O}$ be $\mathbf{0}$ ，and BO be \mathbf{R} ．
－We could just do Set Union on［AO，BK］，［A1，B\｛K－1\}], ..., [AN, B\{K - N $\}$ ］（so that we won＇t double count overlapping interval）and the answer is the size of unioned set．

Full Solution

－We could just do Set Union on［AO，BK］，［A1，B\｛K－1\}], ..., [AN, B\{K-N\}] and the answer is the size of unioned set．
－e．g．Union of $[3,10],[5,14],[16,17],[21,25],[18,26]$ is $[3,14],[16,26]$ ．
－Size of the union set is $(14-3+1)+(26-16+1)=23$ ．
－The Set Union is less complicated because $\mathbf{A O} \leq \mathbf{A 1} \leq \ldots \leq \mathbf{A N}$ ．
－Just maintain the current interval right－bound and try to merge the next interval into it．
－Discard invalid interval where the right－bound＜left－bound，also end the loop early if $\mathrm{K}-\mathrm{N}$ becomes negative．

Full Solution

－We could just do Set Union on［AO，BK］，［A1，B［K－1］］，．．．，［A\｛min（K，N）\}, B0] and the answer is the size of unioned set．
－Alternatively，start with interval［AO，A1－1］，［A1，A2－1］，．．．，［A\｛min（K，N）\}, R]. Update first interval with $\leq \mathbf{B k}$ ，second with $\leq \mathbf{B}\{\mathbf{k}-\mathbf{1}\}$ ，and so on．（basically start with disjoint interval at first so no union is needed）．

Score： 100
Time Complexity： $\mathrm{O}(\mathrm{N} \operatorname{Ig} \mathrm{N}+\mathrm{M} \lg \mathrm{M})$

