S213－Chinese Checkers

Vincent Chiu（VCLH）

S213－Chinese Checkers

Background

Author：	VCLH
Setter：	VCLH，yaufung
Simulator：	nhho（Did you enjoy？）

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Background

Source：Wikipedia

へ 歷史

中國跳棋的前身是正方跳棋（Halma），是由美國人George Howard Monks於 1883年到1884年發明的 ${ }^{[1]}$ ，也說法認為是1885年發明 ${ }^{[2]}$ 。這種跳棋可供 2 人或4人進行遊戲，棋盤為正方形，共有 256 格，開始時棋子分佈在角落，以最快跳到對角為目標，規則和現在的中國跳棋相似。Halma原文為希臘文的 $\mathrm{a} \lambda \mu \mathrm{a}$ ，為跳躍之意，遊觑的靈感則來自一個於1854年發明的英國遊戲Hoppity ${ }^{[3]}$ 。

正方跳棋誕生後，很快又出現了使用六角星形椇盤的變種，在1892就由德國著名的遊戯公司Ravensburger取得專利，被命名為Sternhalma，意為星形跳棋 ${ }^{[1]}$ ，也就是後來所稱的中國跳棋。與正方跳椇相比，遊戲的變化和所需的技巧更加複雜。這個遊戲在20世紀初期逐渐在各國開始流行，其較早的英文名為Hop Ching Checker Game，但隨後被改為Chinese Checkers，但事實上和中國沒有關係 ${ }^{[1]}$ ，只是為了從營銷角度上增加神秘感。中國跳棋的稱法來自英語，而在鳄語中稱作波子椇，因為彈珠也被廣泛用作棋子，彈珠在囪語中的說法即為波子。

日本，韓國有種稱為鑽石跳棋的中國跳椇變體，棋子有王兵之分。

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

＾History and nomenclature

Boys playing Hop Ching Checkers，Montreal， 1942

Despite its name，the game is not a variation of checkers，nor did it originate in China or any part of Asia．The game was invented in Germany in 1892 under the name＂Stern－Halma＂as a variation of the older American game Halma．${ }^{[6]}$ The＂Stern＂（German for star）refers to the board＇s star shape（in contrast to the square board used in Halma）．

The name＂Chinese Checkers＂originated in the United States as a marketing scheme by Bill and Jack Pressman in 1928．The Pressman company＇s game was originally called＂Hop Ching Checkers＂．${ }^{[7]}$

In Japan，the game is known as＂Diamond Game＂（ダイヤモンドゲーム）．The game was introduced to Chinese－speaking regions mostly by the Japanese，${ }^{[6]}$ where it is known as Tiaoqi（Chinese：跳椇，＂jump chess＂）．

S213－Chinese Checkers

The Problem

Given $\mathbf{R} \times \mathbf{C}$ marbles on $(\mathbf{R}+2) \mathbf{x}(\mathbf{C}+2)$ checkerboard Remove all marbles except 1

E．g．$R=2, C=3:$

HhCe

S213－Chinese Checkers

The Problem

Given $\mathbf{R} \times \mathbf{C}$ marbles on $(\mathbf{R}+2) \mathbf{x}(\mathbf{C}+2)$ checkerboard Remove all marbles except 1

S213－Chinese Checkers

Background

Peg Solitaire

－Only orthogonal jumps
－Only one empty hole

S213－Chinese Checkers

Background

What Cherry＂created＂is actually an easier version of peg solitaire
－Allow diagonal jumps：8－move peg solitaire
－Many more empty holes：entire rows and columns

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Scoring

Output \mathbf{N} moves $\rightarrow \mathbf{M}=(\mathbf{R} \times \mathbf{C}-\mathbf{N})$ marbles remain
Score $=40 \times \frac{1}{\sqrt{M}}+10^{1-\frac{M-1}{\min (R, C)}}+50^{1-\frac{M-1}{R \times C}}$
Goal： $\mathrm{M}=1 \leftarrow \mathrm{~N}=\mathrm{R} \times \mathrm{C}-1$

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Sample 1

Input

Output

22
3

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Sample 1

Input
Output
22
3
1112

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Sample 1

Input
Output
22
3
1112
2122

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Sample 1

Input
22

Output

3
1112
2122
2313

S213－Chinese Checkers

Sample 1

Input
22

Output

3
1112
2122
2313

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Sample 2

Input
 Output
 3

22

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Sample 2

Input
Output
22
3
1112

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Sample 2

Input	Output
22	3
	1112
	1322

Output

1322

HhCo

S213-Chinese Checkers

Sample 2

Input

22

Output

3
1112
1322
3121

S213－Chinese Checkers

Sample 2

Input
22

Output

3
1112
1322
3121

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Sample 2

Input

22

Output

3
1112
1322
3121

Observation：Marble goes back to original position

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtasks

For all cases： $2 \leq R, C \leq 100$

Points Constraints

$12 \quad R=2, C=2$
$6142 \leq R, C \leq 5$
23
$R=2, C=3$
$715 \quad R=2$
3 $4 R R=3, C=3$
$819 \quad R=3$
$4 \quad 5 \quad R=4, C=3$
9 32 No additional constraints
$56 \quad R=4, C=4$
HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Statistics

Overview

To solve this kind of ad－hoc and／or constructive problems：
－Usually more interesting（？）and less＂standard＂
－Usually requires a lot of rough work and／or insight and／or intuition

How to approach them？

1．Solve some small cases manually／with the aid of programs
2．Observe patterns／relations between them
3．Making some＂reasonable＂guesses
4．Convince yourself that the guess is correct（or incorrect？）

S213 - Chinese Checkers

Solutions

S213－Chinese Checkers

Subtask 1 （2 points）

$R=2, C=2$
\rightarrow Sanity Check

```
1 #include <bits/stdc++.h>
using namespace std;
int main() {
4 int R, C;
5 cin >> R >> C;
6 if(R == 2 && C == 2){
7 cout << "3" << endl;
8 cout << "1 1 1 2" << endl;
9 cout << "2 1 2 2" << endl;
10 cout << "2 3 1 3" << endl;
11 }
12 return 0;
13}
```

香港電腦奧林匹克競寒
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 1 （2 points）

$R=2, C=2$
\rightarrow Sanity Check

S211			
Skyscraperhenge	S212		
Super Chat	Chinese Checkers	Total	
$?$	$?$	$?$	$?$
$?$	$?$		$?$

S213－Chinese Checkers

Subtask 1 （2 points）

$R=2, C=2$
\rightarrow Sanity Check

S211			
Skyscraperhenge	S212		
Super Chat	Chinese Checkers	Total	
$?$	$?$	$?$	$?$
$?$	$?$		$?$

S213－Chinese Checkers

Strategy 0.0 ： 2 points

1 \＃include＜bits／stdc＋＋．h＞
2 using namespace std；
3 int main（）\｛
4 cout＜＜＂3＂＜＜endl；
5 cout＜＜＂1 11 2＂＜＜endl；
6 cout＜＜＂1 32 2＂＜＜endl；
7 cout＜＜＂3 12 1＂＜＜endl；
8 return 0；
9 \}

S213－Chinese Checkers

Strategy 0.1

1 \＃include＜bits／stdc＋＋．h＞
2 using namespace std；
3 int main（）\｛
4 cout＜＜＂3＂＜＜endl；
5 cout＜＜＂2 21 2＂＜＜endl；
6 cout＜＜＂0 21 1＂＜＜endl；
7 cout＜＜＂2 02 1＂＜＜endl；
8 return 0；
9 \}

S213－Chinese Checkers

Strategy $0.1: 8.36$ points

1 \＃include＜bits／stdc＋＋．h＞
2 using namespace std；
3 int main（）\｛
4 cout＜＜＂3＂＜＜endl；
5 cout＜＜＂2 21 2＂＜＜endl；
6 cout＜＜＂0 21 1＂＜＜endl；
7 cout＜＜＂2 02 1＂＜＜endl；
8 return 0；
9 \}

S213－Chinese Checkers

Strategy 1.1

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Strategy 1．1： 9.33 points

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Strategy 1.2

S213－Chinese Checkers

Strategy 1．2：12．48 points

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Strategy 1.3

HHCO
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Strategy 1.3

HHCC
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Strategy 1．3： 25.77 points

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Back to subtasks．．．

Subtask 5 （6 points）

$$
R=4, C=4
$$

Subtask 5 （6 points）

$$
R=4, C=4
$$

Subtask 2 （3 points）

$R=2, C=3$

Subtask 2 （3 points）

$R=2, C=3$

Subtask 2 （3 points）

$R=2, C=3$

Another way：

Subtask 2 （3 points）

$R=2, C=3$

Another way：

Subtask 4 （5 points）

$$
R=4, C=3
$$

Subtask 4 （5 points）

$$
R=4, C=3
$$

Subtask 3 （4 points）

$R=3, C=3$

Subtask 3 （4 points）

$R=3, C=3$

Subtask 3 （4 points）

$R=3, C=3$

Subtask 3 （4 points）

$R=3, C=3$

Another way：

Subtask 3 （4 points）

$R=3, C=3$

Another way：

Subtask 3 （4 points）

$R=3, C=3$

Another way：

Subtask 3 （4 points）

$R=3, C=3$

Another way：

Subtask 3 （4 points）

$R=3, C=3$

Another way：

Subtask 3 （4 points）

$R=3, C=3$
Another way：

Observation：Marble goes back to original position

HhCo

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 6 （14 points）

$2<=R, C<=5$
Method 1：Brute Force DFS
Method 2：Hardcode

	S211 Skyscraperhenge	S212 Super Chat	S213 Chinese Checkers
$?$			34

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 1 column：

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 1 column：

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 1 column：

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 1 column：

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 1 column：

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 1 column：

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 8 （19 points）

$\mathbf{R}=3$
Reduce 1 column：

HHCO
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 8 （19 points）

$R=3$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 3 columns：

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 3 columns：

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 3 columns：

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 3 columns：

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 3 columns：

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 3 columns：

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 2 columns：（by dbsgame）
Initialization：

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 2 columns：（by dbsgame）
Initialization：

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 2 columns：（by dbsgame）
Initialization：
Glider（Conway＇s Game of Life）

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 7 （15 points）

$R=2$
Reduce 2 columns：（by dbsgame）

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 1 column：（by dbstoshinari123）
Initialization：

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 1 column：（by dbstoshinari123）
Initialization：

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 1 column：（by dbstoshinari123）

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 1 column：（by dbstoshinari123）

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 1 column：（by dbstoshinari123）

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 1 column：（by dbstoshinari123）

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2
Reduce 1 column：（by dbstoshinari123）

HHCO
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 1

S213－Chinese Checkers

Full Solution 1

S213－Chinese Checkers

Full Solution 1

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 1

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 1

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 1

Hice
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2（revisited）
Another strategy：

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2（revisited）
Another strategy：

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2（revisited）

Another strategy：

S213－Chinese Checkers

Subtask 7 （15 points）

R＝2（revisited）

Another strategy：

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 2

S213－Chinese Checkers

Full Solution 2

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 2

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 2

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 2

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari1 23

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari1 23

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari1 23

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari123

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari123

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari1 23

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari123

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari1 23

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari1 23

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari123

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari1 23

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari123

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari123

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S213－Chinese Checkers

Full Solution 3 －by dbstoshinari123

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Overview

To solve this kind of ad－hoc and／or constructive problems：
－Usually more interesting（？）and less＂standard＂
－Usually requires a lot of rough work and／or insight and／or intuition

How to approach them？

1．Solve some small cases manually／with the aid of programs
2．Observe patterns／relations between them
3．Making some＂reasonable＂guesses
4．Convince yourself that the guess is correct（or incorrect？）

Implementation Tricks

－Reduce the problem into smaller cases／lower dimensions
－Solve recursively
－Divide your code into sections
－Clear comments stating which section does what
－Wrap them into functions with meaningful names
－A lot of repetitive set of moves
－e．g． 2×2, T－moves
－Wrap them into helper functions
－Row and column operations are symmetric
－Store outputs with array／vector and print at once
－Use bool to indicate if you have to swap coordinates $(r, c) /(c, r)$

Questions？

Have fun with the simulator ：）

