S212 Super Chat

Problem idea by Tony Wong
Problem set by Wai Ka Hei，Jeremy Chow

30 January， 2021

S212－Super Chat

Statistics

Task	Attempts	Max	Mean	Std Dev	Subtasks				
S212－Super Chat	49	100	30.326	36.66	16：31	15：18	18：13	27： 10	24： 9

First solved by dbstoshinari123 at 0：45
9 contestants got 100
Highest mean among senior problems
Easiest problem in senior problem set

S212－Super Chat

Task

The Super Chat section can only display at most $\mathbf{3}$ Super Chats at a time
The $\mathbf{3}$ latest pinned Super Chats will be shown
Ordered by purchase time

HK\＄120，HK\＄25，HK\＄1000 are the 3 latest
pinned Super Chats among all

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S212－Super Chat

Task

Pin duration is determined by the table	Price	Colour	Pin duration and notes
	\＄5－59	Blue	0 minutes．No chat message can be entered．
	\＄10－924	Cyan	0 minutes
Given \mathbf{N} Super Chat sorted by purchase time	\＄25－549	Green	2 minutes
	\＄50－599	Yellow	5 minutes
	\＄100－5249	Orange	10 minutes
Find the number of seconds that each	\＄250－5499	Magenta	30 minutes
	\＄500－5999	Red	1 hour
Super Chat is visible	\＄1000－51499	Red	2 hours
	\＄1500－\＄1999	Red	3 hours
	\＄2000－\＄2499	Red	4 hours
	\＄2500	Red	5 hours

Sample 1

7				
7	l			
300				
0	25		35	25
:---	:---			
70	25			
110	25			
140	25			
150	25			
210	25			

Time period when each Super Chat is visible：
Super Chat 1：0－110
Super Chat 2：35－140
Super Chat 3：70－150
Super Chat 4：110－210
Super Chat 5：140－260
Super Chat 6：150－270
Super Chat 7：210－330（The stream ended before the Super Chat expires）

Sample 2

4	
4000	
0	500
1	250
2	100
3	100

Time period when each Super Chat is visible：
Super Chat 1：0－3，602－3600
Super Chat 2：1－1801
Super Chat 3：2－602
Super Chat 4：3－603

Hice
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S212－Super Chat

Sample 3

7
9000
602000
80300
6501000
8205
93025
1000120
159050

S212－Super Chat

Solutions

S212－Super Chat

Ideas

```
```

\#define MIN 60

```
```

\#define MIN 60
\#define HR 3600
\#define HR 3600
int getTime(int price) {
int getTime(int price) {
if (price <= 24) return 0;
if (price <= 24) return 0;
if (price <= 49) return 2 * MIN;
if (price <= 49) return 2 * MIN;
if (price <= 99) return 5 * MIN;
if (price <= 99) return 5 * MIN;
if (price <= 249) return 10 * MIN;
if (price <= 249) return 10 * MIN;
if (price <= 499) return 30 * MIN;
if (price <= 499) return 30 * MIN;
if (price <= 999) return 1 * HR;
if (price <= 999) return 1 * HR;
if (price <= 1499) return 2 * HR;
if (price <= 1499) return 2 * HR;
if (price <= 1999) return 3 * HR;
if (price <= 1999) return 3 * HR;
if (price <= 2499) return 4 * HR;
if (price <= 2499) return 4 * HR;
return 5 * HR;
return 5 * HR;
}

```
```

}

```
```


Price is given instead of Pin duration

Write a function to convert Price into Pin duration

Price	Colour	Pin duration and notes
$\$ 5-\$ 9$	Blue	0 minutes．No chat message can be entered．
$\$ 10-\$ 24$	Cyan	0 minutes
$\$ 25-\$ 49$	Green	2 minutes
$\$ 50-\$ 99$	Yellow	5 minutes
$\$ 100-\$ 249$	Orange	10 minutes
$\$ 250-\$ 499$	Magenta	30 minutes
$\$ 500-\$ 999$	Red	1 hour
$\$ 1000-\$ 1499$	Red	2 hours
$\$ 1500-\$ 1999$	Red	3 hours
$\$ 2000-\$ 2499$	Red	4 hours
$\$ 2500$	Red	5 hours

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S212－Super Chat

Ideas

We can imagine Super Chats as Segments on a timeline Start from purchase time T_{i} ，end at $T_{i}+\operatorname{getTime}\left(\mathbb{P}_{i}\right) / /$ Pin duration

4			
4000			
0	500		
1	250		
2	100		
3	100	\quad	4
:---			

香港電腦奧林匹克競賽

S212－Super Chat

Ideas

The last 3 Super Chat among \mathbf{N} chats will always be visible within their Pin duration
$(\mathrm{N}-2)^{\text {th }},(\mathrm{N}-1)^{\mathrm{th}}, \mathrm{N}^{\text {th }}$ Super Chat
No newer Super Chat can＂take＂their spot in the display section
Answer for them＝their Pin duration

How about $\mathbf{1}^{\text {st }}$ to $(\mathbf{N}-\mathbf{3})^{\text {th }}$ Super Chat？

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 1 （16 points）

$\mathbf{P i}=\mathbf{2 5}$ ，i．e．the pin duration of each and every Super Chat is $\mathbf{2}$ minutes．
$1 \leq N \leq 200000$
$N \leq K \leq 500000$

Pin duration（getTime（ $\left.\mathbf{P}_{\mathrm{i}}\right)$ ）is the same for every \mathbf{i}
If a superchat start earlier than another superchat，it ends earlier too $T_{i}<T_{j}=>T_{i}+\operatorname{getTime}\left(P_{i}\right)<T_{j}+\operatorname{getTime}\left(P_{j}\right)$

S212－Super Chat

Subtask 1 （16 points）

If a Super Chat become invisible，it won＇t become visible again
Other visible Super Chats are newer＝＞end Iater

If $\mathrm{i}^{\text {th }}$ Super Chat become invisible before its end time（overtaken by others SC），．．．．
Time \qquad \longrightarrow

Case 2

S212－Super Chat

Subtask 1 （16 points）

If ${ }^{i t h}$ Super Chat become invisible before its end time
it must be overtaken by $(\mathbf{i}+3)^{\text {th }}$ Super Chat takes its spot

Compute the display time of $\mathbf{i}^{\mathbf{t h}}$ Super Chat by considering the difference between $\mathbf{i}^{\text {th }}$ and $(\mathbf{i}+3)^{\text {th }}$ Super Chat＇s purchase time

```
for (int i = 0; i < n; i++) {
    if (i + 3<n) {
        int diff = a[i + 3].t - a[i].t;
        printf("%d\n", min(diff, 120));
    }
    else printf("%d\n", 120);
}
```

Time Complexity： $\mathbf{O}(\mathbf{N})$

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 2 （15 points）

$\mathbf{N}=4$
$4 \leq K \leq 20000$
If a Super Chat become invisible，it won＇t become visible again

4
4000
0500
1250
2100
3100

Time period when each Super Chat is visible：
Super Chat 1：0－3，602－3600
Super Chat 2：1－1801
Super Chat 3：2－602
Super Chat 4：3－603

HHC $\begin{aligned} & \text { 香港電腦奧林匹克競賽 }\end{aligned}$

S212－Super Chat

Subtask 2 （15 points）

$\mathrm{N}=4$
$(\mathbf{N}-2)^{\text {th }},(\mathbb{N}-1)^{\text {th }}, \mathbf{N}^{\text {th }}$ Super Chat will always be visible within their Pin duration How about the $1^{\text {st }}$ Super Chat？
$1^{\text {st }}$ Super Chat is visible for at most two separate time periods

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S212－Super Chat

Subtask 2 （15 points）

Analyse carefully when $1^{\text {st }}$ Super Chat is visible
One way is to consider when $1^{\text {st }}$ Super Chat is blocked by $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ Super Chats

Let the end time end ${ }_{i}$ of $\mathrm{i}^{\text {th }}$ Super Chat be $\mathbf{T}_{\mathbf{i}}+\operatorname{getTime}\left(\mathrm{P}_{\mathrm{i}}\right)$
$1^{\text {st }}$ Super Chat is possibly blocked between $\left[T_{4^{\prime}}, \min \left(\right.\right.$ end $_{2^{\prime}}$, end $_{3^{\prime}}$, end $\left.\left._{4}\right)\right]$

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 2 (15 points)

$1^{\text {st }}$ Super Chat is possibly blocked between [$T_{4}, \min \left(\right.$ end $_{2^{\prime}}$ end $_{3^{\prime}}$ end $\left._{4}\right)$] = $[3,602]$

Display time of $1^{\text {st }}$ Super Chat

$$
\begin{aligned}
& =[0,3]+[602,3600] \\
& =3001
\end{aligned}
$$

Sample 2

S212－Super Chat

Subtask 2 （15 points）

Compute the display time of $1^{\text {st }}$ Super Chat carefully

Time Complexity $=\mathbf{O}(\mathbf{1})$

```
pair <int, int> forbid = make_pair(a[3].t, min({a[1].ed, a[2].ed, a[3].ed}));
if (forbid.first < forbid.second) {
    int totalTime = 0;
    totalTime += min(getTime(a[0].p), forbid.first - a[0].t);
    totalTime += max(0, a[0].ed - forbid.second);
    printf("%d\n", totalTime);
}
else printf("%d\n", getTime(a[0].p));
for (int i = 1; i < n; i++) printf("%d\n", getTime(a[i].p));
```


Subtask 2 （15 points）

As \mathbf{N} is small and $\mathbf{K} \leq \mathbf{2 0 0 0 0}$
Simulate the Super Chats for each second from $\mathbf{0}$ to $\mathbf{K} \mathbf{K + 1 7 9 9 9}$

Check from $\mathbf{4}^{\text {th }}$ Super Chat to $\mathbf{1}^{\text {st }}$ Super Chat（ $\mathbf{t}_{\mathbf{i}} \leq$ currentTime $\leq \mathbf{e d}_{\mathbf{i}}$ ）
Add one second to the top 3 latest active Super Chats at that moment
Break when found 3 active Super Chats

Time complexity＝ $\mathbf{O}(\mathbf{N K})$

HhCe

Subtask 3 （18 points）

$1 \leq \mathrm{N} \leq 1000$
$N \leq K \leq 20000$
\mathbf{N} is small and $\mathbf{K} \leq \mathbf{2 0 0 0 0}$ ，can use the previous solution
NK at most 2×10^{7}
$\mathbf{O}(\mathbf{N K})$ solution can pass within 1 second

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 3 （18 points）

Simulate the Super Chats for each second from 0 to \mathbb{K} K＋17999

Check from $\mathbf{N}^{\text {th }}$ Super Chat to $\mathbf{1}^{\text {st }}$ Super Chat（ $\mathrm{t}_{\mathbf{i}} \leq$ currentTime $\leq \mathbf{e d}_{\mathrm{i}}$ ）
Add one second to the top 3 latest active Super Chats at that moment
Break when found 3 active Super Chats

Time complexity $=\mathbf{O}(\mathbf{N K})$

HHCC
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 4 （27 points）

$1 \leq \mathrm{N} \leq 200000$
$N \leq K \leq 500000$
$\mathrm{NK} \approx 10^{11}$
$\mathbf{O}(\mathbf{N K})$ solution can＇t pass in 1 second

Let＇s try to improve the $\mathbf{O}(\mathbf{N K})$ solution！

HhCo

Subtask 4 （27 points）

Currently we find top 3 latest active Super Chats by linear scan
Scan from $\mathbf{N}^{\text {th }}$ Super Chat to $1^{\text {st }}$ Super Chat
Each second takes $\mathbf{O}(\mathbf{N})$ to search those 3 Super Chats
Result in $\mathbf{O}(\mathbf{N K})$

If we can use less than $\mathbf{O}(\mathbf{N})$ to search for the top 3 Super Chats
We can achieve a better solution

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 4 （27 points）

Want to find the top 3 Super Chats at a moment quickly
We can maintain the lists of active Super Chats by stack
The stack will store the id of the active Super Chats

At the end of $\mathbf{i}^{\text {th }}$ second，if there is a new Super Chat，push the id of it into the stack
Super Chats are sorted in purchase time in the stack
The latest Super Chat is on the top of the stack

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 4 （27 points）

At the beginning of $\mathbf{i}^{\text {th }}$ second，we want to find the top 3 Super Chats
Scan from the top of stack to bottom
If the current super chat is not expired（end $\mathrm{x}_{\mathrm{x}} \mathrm{i}$ ），add one second to its answer
－\quad Save it to some temp memory and push it back（the stack need to remain sorted）
else pop it out
If we already found 3 active Super Chats in the stack，break
Still O（NK）？

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 4 （27 points）

Let＇s say in $\mathbf{i}^{\text {th }}$ second，we accessed $\mathbf{m}_{\mathbf{i}}$ elements in the stack $m_{i}-3$ of them are popped

We pushed \mathbf{N} elements into the stack（ \mathbf{N} Super Chats）
$\operatorname{Sum}\left(m_{i}-3\right) \leq N$
$\operatorname{Sum}\left(\mathrm{m}_{\mathrm{i}}\right)=\mathbf{O}(\mathrm{N})$

Time complexity $=\mathbf{O}(\mathbf{N K}) \mathbf{O}(\mathbf{N}+\mathrm{K})$

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

$1 \leq N \leq 200000$
$N \leq K \leq 10^{9}$
K is too big that $\mathbf{O}(\mathbf{N}+\mathrm{K})$ solution can＇t pass in one second
Instead of simulating the super chats for each second
We can simulate the process in a smarter way

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S212－Super Chat

Full Solution

If the current super chat is not expired（end ${ }_{x}<i$ ），add one second to its answer else pop it out（ end $_{x}=\mathrm{i}$ ）

If there is a new Super Chat $\left(T_{x}=i\right)$ ，push the id of it into the stack

When $\mathbf{i}=\mathbf{T}_{\mathbf{x}}$ or end $_{\mathbf{x}^{\prime}}$ the top 3 Super Chats may change else the top 3 Super Chats remain unchanged $\mathbf{i}=\mathbf{T}_{\mathbf{x}}$ or end $_{\mathrm{x}}=>$ there are 2 N important timestamp

Full Solution

Instead of simulating the process for each second
Simulate the process for each important timestamps

Calculate the display time of top 3 Super Chats between important timestamps
－Instead of adding one second at a time

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

Add all the important timestamps into an array
Store（time，id，type）for each timestamps
－type 0 ＝start of the Super Chat，type 1 ＝end of the Super Chat

Sort it by ascending time

Process the important timestamps one by one

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

At the beginning of $\mathbf{i}^{\text {th }}$ seond timestamp，we want to find the top 3 Super Chats
Scan from the top of stack to bottom
If the current super chat is not expired，add ene－send the difference between the current and previous timestamp to its answer
else pop it out
If we already found 3 active Super Chats in the stack，break

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S212－Super Chat

Full Solution

At the end of $\mathbf{i}^{\text {th }}$ timestamp

If it is a type $\mathbf{0}$ timestamp（start of a Super Chat），push the id of it into the stack
If it is a type $\mathbf{1}$ timestamp（end of a Super Chat），mark the Super Chat as expired

Time complexity $=\mathbf{O}(\mathbf{N} \operatorname{logN})$
－Bottleneck：sort

S212－Super Chat

Full Solution

```
for (int i = 0; i < event.size(); i++) {
    vector <int> updateId;
    while (updateId.size() < 3 && stk.size()) {
    if (removed[stk.top()]) stk.pop();
        else {
            updateId.push_back(stk.top());
            stk.pop();
        }
    }
    int addTime = event[i].t;
    if (i - 1 >= 0) addTime -= event[i - 1].t;
```

reverse（updateId．begin（），updateId．end（））；

```
    for (auto id : updateId) {
        stk.push(id);
        res[id] += addTime;
    }
    if (!event[i].type) stk.push(event[i].id);
    else removed[event[i].id] = 1;
```

\}

S212－Super Chat

Full Solution

You can also implement maintain the active Super Chats with std：：set

Easier implementation
Larger constant

O（NlogN）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

Another way is to maintain the top 3 latest active SCs for each duration tier
－Instead of maintain every SCs in a single stack
There are 9 duration tier for SC（ignore 0 mins）
We can maintain the active SCs for each tier by queues

Unlike maintaining in stack，when a SC expires
It always locate in the front of the queue of its iter

Price	Colour	Pin duration and notes
$\$ 5-\$ 9$	Blue	0 minutes．No chat message can be entered．
$\$ 10-\$ 24$	Cyan	0 minutes
$\$ 25-\$ 49$	Green	2 minutes
$\$ 50-\$ 99$	Yellow	5 minutes
$\$ 100-\$ 249$	Orange	10 minutes
$\$ 250-\$ 499$	Magenta	30 minutes
$\$ 500-\$ 999$	Red	1 hour
$\$ 1000-\$ 1499$	Red	2 hours
$\$ 1500-\$ 1999$	Red	3 hours
$\$ 2000-\$ 2499$	Red	4 hours
$\$ 2500$	Red	5 hours

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

We can remove a SC immediately when it expires
－In stack，we remove it lazily（remove when we face an expired SC）

If we want to find the top 3 latest SCs overall

We only care about top 3 SCs in each duration tier

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Full Solution

Therefore，there are only $9 \times 3=27$ candidates
We want to find the top 3 candidates（by sorting／partitioning）and update their answers
－Top 3 largest id

Time complexity $=\mathbf{O}(\mathbf{N} \log \mathbf{N}+\mathbf{3 T} \log (3 \mathrm{~T})$ ）or $\mathbf{O}(\mathbf{N} \log \mathbf{N}+3 \mathbf{T})$
T ＝number of duration iters

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

S212－Super Chat

Full Solution

```
for (auto p : events) {
if (p.first != last_time) {
    int last_duration = p.first - last_time;
    last_time = p.first;
    vector<pair<int, int>> candidates;
    for (const auto& v : scs) {
        for (int i = max(0, int(v.size()) - 3); i < v.size(); i++) { }
            candidates.push_back(v[i]);
        }
    }
    sort(candidates.begin(), candidates.end());
```


S212－Super Chat

Any Questions？

Probably no．．．

