
S212 - Super Chat

S212 Super Chat
Problem idea by Tony Wong

Problem set by Wai Ka Hei, Jeremy Chow

30 January, 2021

S212 - Super Chat

First solved by dbstoshinari123 at 0:45

9 contestants got 100

Highest mean among senior problems

Easiest problem in senior problem set

S212 - Super Chat

The Super Chat section can only display at most 3 Super Chats at a time

The 3 latest pinned Super Chats will be shown

Ordered by purchase time

HK$120, HK$25, HK$1000 are the 3 latest

pinned Super Chats among all

S212 - Super Chat

Each Super Chat is described by purchase time Ti and price Pi

Pin duration is determined by the table

Given N Super Chat sorted by purchase time

Find the number of seconds that each

Super Chat is visible

S212 - Super Chat

7

300

0 25

35 25

70 25

110 25

140 25

150 25

210 25

Time period when each Super Chat is visible:
Super Chat 1: 0 - 110

Super Chat 2: 35 - 140

Super Chat 3: 70 - 150

Super Chat 4: 110 - 210

Super Chat 5: 140 - 260

Super Chat 6: 150 - 270

Super Chat 7: 210 - 330 (The stream ended before the Super Chat expires)

S212 - Super Chat

4

4000

0 500

1 250

2 100

3 100

Time period when each Super Chat is visible:
Super Chat 1: 0 - 3, 602 - 3600

Super Chat 2: 1 - 1801

Super Chat 3: 2 - 602

Super Chat 4: 3 - 603

S212 - Super Chat

7

9000

60 2000

80 300

650 1000

820 5

930 25

1000 120

1590 50

S212 - Super Chat

S212 - Super Chat

Price is given instead of Pin duration

Write a function to convert Price into Pin duration

#define MIN 60

#define HR 3600

int getTime(int price) {

 if (price <= 24) return 0;

 if (price <= 49) return 2 * MIN;

 if (price <= 99) return 5 * MIN;

 if (price <= 249) return 10 * MIN;

 if (price <= 499) return 30 * MIN;

 if (price <= 999) return 1 * HR;

 if (price <= 1499) return 2 * HR;

 if (price <= 1999) return 3 * HR;

 if (price <= 2499) return 4 * HR;

 return 5 * HR;

}

S212 - Super Chat

We can imagine Super Chats as Segments on a timeline

Start from purchase time Ti, end at Ti + getTime(Pi) // Pin duration

4

4000

0 500

1 250

2 100

3 100

4

4000

0 3600

1 1801

2 602

3 603

New

0 1 2 3 602 603 1801 3600
Time

3 latest “active” segment
will be displayed

Visualization

S212 - Super Chat

The last 3 Super Chat among N chats will always be visible within their Pin duration

(N-2)th, (N-1)th, Nth Super Chat

No newer Super Chat can “take” their spot in the display section

Answer for them = their Pin duration

How about 1st to (N-3)th Super Chat?

S212 - Super Chat

Pi = 25, i.e. the pin duration of each and every Super Chat is 2 minutes.

1 ≤ N ≤ 200000

N ≤ K ≤ 500000

Pin duration (getTime(Pi)) is the same for every i
If a superchat start earlier than another superchat, it ends earlier too

Ti < Tj => Ti + getTime(Pi) < Tj + getTime(Pj)

S212 - Super Chat

If a Super Chat become invisible, it won’t become visible again

Other visible Super Chats are newer => end later

If ith Super Chat become invisible before its end time (overtaken by others SC),

New

Time

New

Time

Case 1 Case 2

S212 - Super Chat

If ith Super Chat become invisible before its end time

it must be overtaken by (i+3)th Super Chat takes its spot

Compute the display time of ith Super Chat by considering

the difference between ith and (i+3)th Super Chat’s

purchase time

Time Complexity: O(N)

for (int i = 0; i < n; i++) {

 if (i + 3 < n) {

 int diff = a[i + 3].t - a[i].t;

 printf("%d\n", min(diff, 120));

 }

 else printf("%d\n", 120);

}

S212 - Super Chat

N = 4
4 ≤ K ≤ 20000

If a Super Chat become invisible, it won’t become visible again

4

4000

0 500

1 250

2 100

3 100

Time period when each Super Chat is visible:
Super Chat 1: 0 - 3, 602 - 3600

Super Chat 2: 1 - 1801

Super Chat 3: 2 - 602

Super Chat 4: 3 - 603

S212 - Super Chat

N = 4
(N-2)th, (N-1)th, Nth Super Chat will always be visible within their Pin duration

How about the 1st Super Chat?

1st Super Chat is visible for at most two separate time periods

S212 - Super Chat

Analyse carefully when 1st Super Chat is visible

One way is to consider when 1st Super Chat is blocked by 2nd, 3rd
 and 4th Super Chats

Let the end time endi of ith Super Chat be Ti + getTime(Pi)
1st Super Chat is possibly blocked between [T4, min(end2, end3, end4)]

S212 - Super Chat

1st Super Chat is possibly blocked between [T4, min(end2, end3, end4)]
= [3, 602]

Display time of 1st Super Chat

= [0, 3] + [602, 3600]

= 3001
New

0 1 2 3 602 603 1801 3600
Time

Sample 2

S212 - Super Chat

pair <int, int> forbid = make_pair(a[3].t, min({a[1].ed, a[2].ed, a[3].ed}));

if (forbid.first < forbid.second) {

 int totalTime = 0;

 totalTime += min(getTime(a[0].p), forbid.first - a[0].t);

 totalTime += max(0, a[0].ed - forbid.second);

 printf("%d\n", totalTime);

}

else printf("%d\n", getTime(a[0].p));

for (int i = 1; i < n; i++) printf("%d\n", getTime(a[i].p));

Compute the display time

of 1st Super Chat carefully

Time Complexity = O(1)

S212 - Super Chat

As N is small and K ≤ 20000
Simulate the Super Chats for each second from 0 to K K+17999

Check from 4th Super Chat to 1st Super Chat (ti ≤ currentTime ≤ edi)
Add one second to the top 3 latest active Super Chats at that moment
Break when found 3 active Super Chats

Time complexity = O(NK)

S212 - Super Chat

1 ≤ N ≤ 1000
N ≤ K ≤ 20000

N is small and K ≤ 20000, can use the previous solution

NK at most 2 ⨯ 107

O(NK) solution can pass within 1 second

S212 - Super Chat

Simulate the Super Chats for each second from 0 to K K+17999

Check from Nth Super Chat to 1st Super Chat (ti ≤ currentTime ≤ edi)

Add one second to the top 3 latest active Super Chats at that moment

Break when found 3 active Super Chats

Time complexity = O(NK)

S212 - Super Chat

1 ≤ N ≤ 200000

N ≤ K ≤ 500000

NK ≈ 1011

O(NK) solution can’t pass in 1 second

Let’s try to improve the O(NK) solution!

S212 - Super Chat

Currently we find top 3 latest active Super Chats by linear scan

Scan from Nth Super Chat to 1st Super Chat

Each second takes O(N) to search those 3 Super Chats

Result in O(NK)

If we can use less than O(N) to search for the top 3 Super Chats

We can achieve a better solution

S212 - Super Chat

Want to find the top 3 Super Chats at a moment quickly

We can maintain the lists of active Super Chats by stack

The stack will store the id of the active Super Chats

At the end of ith second, if there is a new Super Chat, push the id of it into the stack

Super Chats are sorted in purchase time in the stack

The latest Super Chat is on the top of the stack

S212 - Super Chat

At the beginning of ith second, we want to find the top 3 Super Chats

Scan from the top of stack to bottom

If the current super chat is not expired (endx < i), add one second to its answer

- Save it to some temp memory and push it back (the stack need to remain sorted)

else pop it out

If we already found 3 active Super Chats in the stack, break

Still O(NK)?

S212 - Super Chat

Let’s say in ith second, we accessed mi elements in the stack

mi-3 of them are popped

We pushed N elements into the stack (N Super Chats)

Sum(mi-3) ≤ N

Sum(mi) = O(N)

Time complexity = O(NK) O(N + K)

S212 - Super Chat

1 ≤ N ≤ 200000

N ≤ K ≤ 109

K is too big that O(N + K) solution can’t pass in one second

Instead of simulating the super chats for each second

We can simulate the process in a smarter way

S212 - Super Chat

If the current super chat is not expired (endx < i), add one second to its answer

else pop it out (endx = i)

If there is a new Super Chat (Tx = i), push the id of it into the stack

When i = Tx or endx, the top 3 Super Chats may change

else the top 3 Super Chats remain unchanged

i = Tx or endx => there are 2N important timestamp

S212 - Super Chat

Instead of simulating the process for each second

Simulate the process for each important timestamps

Calculate the display time of top 3 Super Chats between important timestamps

- Instead of adding one second at a time

S212 - Super Chat

Add all the important timestamps into an array

Store (time, id, type) for each timestamps

- type 0 = start of the Super Chat, type 1 = end of the Super Chat

Sort it by ascending time

Process the important timestamps one by one

S212 - Super Chat

At the beginning of ith second timestamp, we want to find the top 3 Super Chats

Scan from the top of stack to bottom

If the current super chat is not expired, add one second the difference between the

current and previous timestamp to its answer

else pop it out

If we already found 3 active Super Chats in the stack, break

S212 - Super Chat

At the end of ith second timestamp

If it is a type 0 timestamp (start of a Super Chat), push the id of it into the stack

If it is a type 1 timestamp (end of a Super Chat), mark the Super Chat as expired

Time complexity = O(NlogN)

- Bottleneck: sort

S212 - Super Chat

for (int i = 0; i < event.size(); i++) {

 vector <int> updateId;

 while (updateId.size() < 3 && stk.size()) {

 if (removed[stk.top()]) stk.pop();

 else {

 updateId.push_back(stk.top());

 stk.pop();

 }

 }

 int addTime = event[i].t;

 if (i - 1 >= 0) addTime -= event[i - 1].t;

reverse(updateId.begin(), updateId.end());

 for (auto id : updateId) {

 stk.push(id);

 res[id] += addTime;

 }

 if (!event[i].type) stk.push(event[i].id);

 else removed[event[i].id] = 1;

}

S212 - Super Chat

You can also implement maintain the active Super Chats with std::set

Easier implementation

Larger constant

O(NlogN)

S212 - Super Chat

Another way is to maintain the top 3 latest active SCs for each duration tier

- Instead of maintain every SCs in a single stack

There are 9 duration tier for SC (ignore 0 mins)

We can maintain the active SCs for each tier by queues

Unlike maintaining in stack, when a SC expires

It always locate in the front of the queue of its iter

S212 - Super Chat

We can remove a SC immediately when it expires

- In stack, we remove it lazily (remove when we face an expired SC)

If we want to find the top 3 latest SCs overall

We only care about top 3 SCs in each duration tier

S212 - Super Chat

Therefore, there are only 9 x 3 = 27 candidates

We want to find the top 3 candidates (by sorting / partitioning) and update their

answers

- Top 3 largest id

Time complexity = O(NlogN + 3Tlog(3T)) or O(NlogN + 3T)

T = number of duration iters

S212 - Super Chat

for (auto p : events) {

 if (p.first != last_time) {

 int last_duration = p.first - last_time;

 last_time = p.first;

 vector<pair<int, int>> candidates;

 for (const auto& v : scs) {

 for (int i = max(0, int(v.size()) - 3); i < v.size(); i++) {

 candidates.push_back(v[i]);

 }

 }

 sort(candidates.begin(), candidates.end());

 int count = 3;

 while (count && !candidates.empty()) {

 auto candidate = candidates.back();

 ans[candidate.second] += last_duration;

 count--;

 candidates.pop_back();

 }

 }

 if (p.second < 0) {

 scs[t[-p.second]].pop_front();

 } else {

 scs[t[p.second]].push_back(p);

 }

}

S212 - Super Chat

Probably no...

