J213 Paint the Wall

Author：Alex Tung Setter：Hei Chit Cheng Solution：Ian Wong

J213－Paint the Wall

Problem

Given a R＊C grid，initially all cells are white，paint K cells to black．Maximize pairs of adjacent cells with different color．

	$\begin{aligned} & l \text { cases: } \\ & 2, C \leq 10 \\ & V \leq R \times \end{aligned}$	
	Points	Constraints
1	13	$R=1$
2	18	$\begin{aligned} & R=2 \\ & 2 \leq C \leq 100 \end{aligned}$
3	9	$R=C=3$
4	8	$\begin{aligned} & R \times C \text { is even } \\ & N=\frac{R \times C}{2} \end{aligned}$
5	29	$R \times C$ is even
6	23	No additional

Hong Kong Olympiad in Informatics

Stats

First solve：cwong 1：14

7 contestants had scored 100

Mean： 22

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 3

$R=C=3$
You can solve $K=1 . .9$ on paper and hardcode it，or writing a brute force algorithm to generate all possible colourings and find the optimal one．

Time complexity： $\mathrm{O}(1)$ or $\mathrm{O}\left(2^{\wedge}\left(\mathrm{R}^{*} \mathrm{C}\right)\right)$

Main Observation 1

Notice that when $K>R * C / 2$ ，the problem can be transformed to，initially all cells are＇ 1 ＇，we are changing R＊C－K cells to＇ 0 ＇．So，we can solve the original problem with $\mathrm{K}=\mathrm{R}$＊ $\mathrm{C}-\mathrm{K}$ and flip the cell color at last．
From now on，we assume that $\mathrm{K}<=\mathrm{R} * \mathrm{C} / 2$.

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 1

$R=1$

Intuitively，we know when C is odd，we should choose cell 2，4，．．．，C－1．（row 1） And when C is even，we can choose $1,3, \ldots, C-1$ or $2,4, \ldots, C$ ．

Why the parity of C matters？Think about C＝3，we have to choose the middle cell since only it has two neighbours．In general，we don＇t really want to choose cell 1 or C unless we have no choice．

Main Observation 2

When $K<=R$＊C／2，in optimal answer，we will never paint two adjacent cells with＇ 1 ＇．We can always construct such answer（choose odd or even columns）．

Subtask 1

Since in both cases（ C is even or odd），start choosing from 2 is optimal． So we will paint cell $2,4,6, \ldots$ and stop when we have painted K cells． Time complexity：O（C）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 2

$R=2, C<=100$
We can extend main observation 2 ，and it also works when $\mathrm{R}=2$ ．
When $K=R$＊C／2，we know our answer will be：

What if $K<R * C / 2$ ？

Main Observation 3

We can pick the cells greedily．
When $R=2$ and $C=5$ ，we have 5 choices to paint．
Notice that we can consider these choices independently and it wouldn＇t affect others，as we would never paint both adjacent cells with＇ 1 ＇．

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 2

We want to greedily paint cells that have more adjacent neighbours（cells that aren＇t located in column 1 or C ）．

For example，when $R=2, C=5$ and $K=3$ ，the solution below is one of the optimal solutions．

Time complexity：$O\left(R^{*} \mathrm{C}\right)$

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 4

$R * C$ is even and $K=R * C / 2$.
With our intuition or the observation we have，main observation 2 and indeed it works in general case（ $R>2$ ），we can notice that we will be painting the grid like this：
（1，1），（1，3），．．．
（2，2），（2，4），．．．
$(3,1),(3,3), \ldots$

Time Complexity：O（R＊C）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask 5

R＊C is even
We can combine our idea in subtask 2 and 4 ．We are picking K non－adjacent cells to paint them as＇ 1 ＇and we are picking them greedily by their number of adjacent neighbours．So we are picking K cells from here：
$(1,1),(1,3), \ldots$
$(2,2),(2,4), \ldots$
$(3,1),(3,3), \ldots$

Subtask 5

$K=1$
$K=2$
$K=6$

Time complexity：$O\left(R^{*} \mathrm{C}\right)$

Subtask 6

No additional constraints

Why doesn＇t subtask 5＇s idea work in general？
When $\mathrm{R}=\mathrm{C}=3, \mathrm{~K}=4$ ：
it is better to paint it in the way of the left one than the right one．

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Main Observation 4

We have two（and only two）different choosing mechanisms for non－adjacent cells：
1．choose cell (i, j) where $i+j=0(\bmod 2)$
2．choose cell (i, j) where $i+j=1(\bmod 2)$

When R＊C is even，two methods are the same．（Imagine $R=4$ and $C=4$ ）
When R＊C is odd，one might yield a better result．

Subtask 6

We try both methods and pick the one with larger result．
Time complexity：O（R＊C）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

