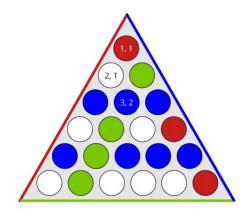
J212 - Paint the Floor

Percy Wong {percywtc}

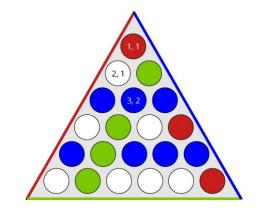
J212 - Paint the Wall

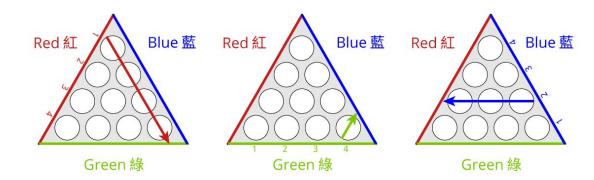

Background

Author: percywtc

Setters: s13215, christycty

Pictures: microtony





The Problem

Painting a triangular grid with 3 colors, in 3 directions

First perform some painting operations, Then query the color of some cells

Subtasks

N = Height of the grid

P = Number of painting operations

Q = Number of queries

For all cases: 1	$\leq N, P, Q$	≤ 200000
------------------	----------------	---------------

	Points	Constraints
1	12	$1 \leq N, P, Q \leq 10$ Only blue paint is used
2	12	Only blue paint is used
3	15	$1 \leq N, P \leq 500$ Only green and blue paints are used
4	15	Only green and blue paints are used
5	23	$1 \leq N, P \leq 500$
6	23	No additional constraints

Statistics

12 points	6+2+0+0=8
24 points	2+3+0+0=5
27 points	0+4+0+0=4
39 points	0+ 1+0+0=1
50 points	2+5+4+0=11
62 points	0+2+2+0=4
77 points	0+ 1+ 1+0=2
100 points	0+ 1+9+8=18

First **Accepted** by **dbsboscowang** at **14m44s**

For all cases:	1	\leq	N,	P,	Q	\leq	200000
----------------	---	--------	----	----	---	--------	--------

	Points	Constraints
1	12	$1 \leq N, P, Q \leq 10$ Only blue paint is used
2	12	Only blue paint is used
3	15	$1 \leq N, P \leq 500$ Only green and blue paints are used
4	15	Only green and blue paints are used
5	23	$1 \leq N, P \leq 500$
6	23	No additional constraints

Subtasks Analysis

We can solve the task in two dimensions:

Subtasks	Blue	Blue, Green	Blue, Green, Red
N, P small	1	1+3	1+3+5
N, P large	1+2	1+2+3+4	1+2+3+4+5+6

Points	Blue	Blue, Green	Blue, Green, Red
N, P small	12	27	50
N, P large	24	54	100

For all cases: $1 \le N, P, Q \le 200000$

	Points	Constraints
1	12	$1 \leq N, P, Q \leq 10$ Only blue paint is used
2	12	Only blue paint is used
3	15	$1 \leq N, P \leq 500$ Only green and blue paints are used
4	15	Only green and blue paints are used
5	23	$1 \leq N, P \leq 500$
6	23	No additional constraints

Solution for N, P small

We can simply perform simulation of the painting operations

Store the color in a 2-dimensional array of characters

```
char[1..500][1..500] grid := {'W'...}  // set all as white

for each paint operation OP:
   for each cell (x,y) to be painted in OP:
        grid[x][y] := OP.color

for each query (x,y):
   print grid[x][y]
```


Solution for N, P small

We can simply perform simulation of the painting operations

Store the color in a 2-dimensional array of characters

```
char[1..500][1..500] grid := {'W'...}  // set all as white

for each paint operation OP:
   for each cell (x,y) to be painted in OP:
        grid[x][y] := OP.color

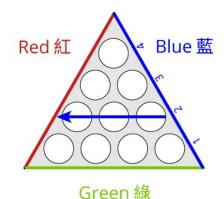
for each query (x,y):
   print grid[x][y]
```


J212 - Paint the Wall

Solution for N, P small

How to find which cells to be painted?

Solution for N, P small - Blue


Blue operations paint cells of the same row

Which row?

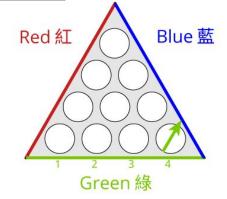
Row (**N** + 1 - **L**)

L = 1	Row 4
L = 2	Row 3
L = 3	Row 2
L = 4	Row 1

Solution for N, P small - Green

Green operations paint cells of the same column

Column L


Which rows do column L has?

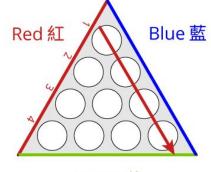
Row L to N

col := L
for row from L to N:
 grid[row][col] := 'G'

Column 1	Row 1 to 4
Column 2	Row 2 to 4
Column 3	Row 3 to 4
Column 4	Row 4 to 4

Solution for N, P small - Red

Red operations paint cells of the same column


Starts at row L,

Column increases by 1 per row

L = 1	(1,1) (2,2) (3,3) (4,4)
L = 2	(2,1) (3,2) (4,3)
L = 3	(3,1) (4,2)
L = 4	(4,1)

col	:= 1					
for	row	from	L	to	N:	
gr	id[r	ow][col]	:=	'R'
CO	1 :=	col	+	1		

Solution for N, P large

For larger N and P, e.g. 200000

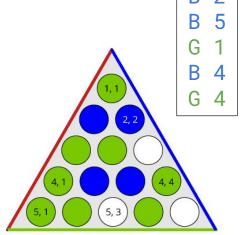
Worst case: need to update 200000×200000 = 4×10¹⁰ times, Time Limit Exceeded

How to speed up? Let's try to solve from subtasks!

Solution for N, P large - Blue

Blue operations paint cells of the same row

```
Painting Line L is Row (N + 1 - L),
in other words, row X is painted iff there exists some blue L = N + 1 - X
We can just memorize which lines are painted, which lines are not:)
bool[1..200000] bluePainted = {false...} // set all as false
for each paint operation OP:
  bluePainted[OP.L] := true
                                            // mark which "L"s are painted
for each query (x,y):
  print 'B' if bluePainted[N+1-x] else 'W'
```

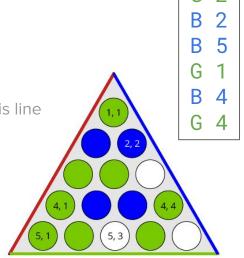


Solution for N, P large - Blue + Green

Can we apply similar idea as the previous one?

Column Y is painted iff there exists some green L = Y

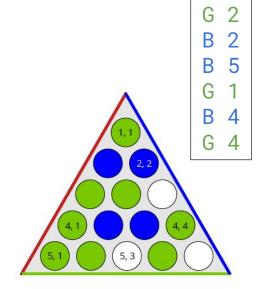
What to do if bluePainted[N+1-x] and greenPainted[y] are both true?


Solution for N, P large - Blue + Green

What to do if bluePainted[N+1-x] and greenPainted[y] are both true?

It actually depends on which color comes later

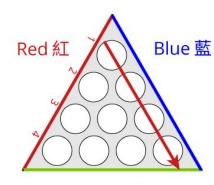
Instead of memorizing lines painted or not (boolean),


We can maintain the latest time painting the lines (integer)

Solution for N, P large - Blue + Green

	1	2	3	4	5
blueLast		2		5	3
greenLast	4	1		6	

```
for each query (x,y):
   print 'B' if blueLast[N+1-x] > greenLast[y] else 'G'
// How do handle white (not painted)?
```

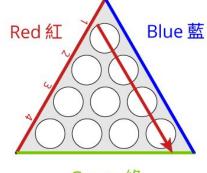
Solution for N, P large - Blue + Green + Red

We can do similar stuff with Red operations!

What kind of cells get affected when we paint Red on Line L?

L = 1	(1,1) (2,2) (3,3) (4,4)
L = 2	(2,1) (3,2) (4,3)
L = 3	(3,1) (4,2)
L = 4	(4,1)

Solution for N, P large - Blue + Green + Red


We can do similar stuff with Red operations!

What kind of cells get affected when we paint Red on Line L?

It's when x - y + 1 = L

L = 1	(1,1) (2,2) (3,3) (4,4)
L = 2	(2,1) (3,2) (4,3)
L = 3	(3,1) (4,2)
L = 4	(4,1)

We can mark redLast[1..200000] similarly

Accepted

