# J211－Paint Shop 

Author：Percy Wong Presenter：Gabriel Liu

## Background

Author：percywtc
Setters：gabrielliu2001，kobebryan9

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## Task

7 colors of paints：cyan，magenta，yellow，black，red，green，and blue Each paint price is an integer price per litre．
Obtain at least $\mathbf{N}$ litres of paint of a given color by buying and／or mixing the paints using the following formulas：

| 1 L cyan +1 L magenta | $\rightarrow 2 \mathrm{~L}$ blue |
| :--- | :--- |
| 1 L magenta +1 L yellow | $\rightarrow 2 \mathrm{~L}$ red |
| 1 L cyan +1 L yellow | $\rightarrow 2 \mathrm{~L}$ green |


| $1 L$ cyan +1 L magenta +1 yellow | $\rightarrow 3 L$ black |
| :--- | :--- |
| $1 L$ red +1 L green +1 L blue | $\rightarrow 3 L$ black |
| $1 L$ cyan +2 L red | $\rightarrow 3 L$ black |
| $1 L$ magenta $+2 L$ green | $\rightarrow 3 L$ black |
| $1 L$ yellow +2 L blue | $\rightarrow 3 L$ black |

## J211－Paint Shop

## Sample 1

|  | cyan | magenta | yellow | black | red | green | blue |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Price | 10 | 10 | 10 | 15 | 15 | 15 | 15 |

Required： 7 litres of red

3L magenta +3 L yellow $\rightarrow 6 \mathrm{~L}$ red 1 L red

$$
\begin{aligned}
\text { Answer } & =3 * 10+3 * 10+15 \\
& =75
\end{aligned}
$$

$$
\begin{array}{ll}
1 \mathrm{~L} \text { cyan }+1 \mathrm{~L} \text { magenta } & \rightarrow 2 \mathrm{~L} \text { blue } \\
1 \mathrm{~L} \text { magenta }+1 \mathrm{~L} \text { yellow } & \rightarrow 2 \mathrm{~L} \text { red } \\
1 \mathrm{~L} \text { cyan }+1 \mathrm{~L} \text { yellow } & \rightarrow 2 \mathrm{~L} \text { green }
\end{array}
$$

| 1 L cyan +1 L magenta +1 L yellow | $\rightarrow 3 \mathrm{~L}$ black |
| :--- | :--- |
| 1 L red +1 L green +1 L blue | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L cyan +2 L red | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L magenta +2 L green | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L yellow +2 L blue | $\rightarrow 3 \mathrm{~L}$ black |

## J211－Paint Shop

## Sample 2

|  | cyan | magenta | yellow | black | red | green | blue |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Price | 10 | 10 | 10 | 25 | 25 | 25 | 25 |

Required： 7 litres of red

4 L magenta +4 L yellow $\rightarrow 8 \mathrm{~L}$ red

$$
\begin{aligned}
1 \mathrm{~L} \text { cyan }+1 \mathrm{~L} \text { magenta } & \rightarrow 2 \mathrm{~L} \text { blue } \\
1 \mathrm{~L} \text { magenta }+1 \mathrm{~L} \text { yellow } & \rightarrow 2 \mathrm{~L} \text { red } \\
1 \mathrm{~L} \text { cyan }+1 \mathrm{~L} \text { yellow } & \rightarrow 2 \mathrm{~L} \text { green }
\end{aligned}
$$

$$
\begin{aligned}
\text { Answer } & =4 * 10+4 * 10 \\
& =80
\end{aligned}
$$

| 1 L cyan +1 L magenta +1 L yellow | $\rightarrow 3 \mathrm{~L}$ black |
| :--- | :--- |
| 1 L red +1 L green +1 L blue | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L cyan +2 L red | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L magenta +2 L green | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L yellow +2 L blue | $\rightarrow 3 \mathrm{~L}$ black |

## J211－Paint Shop

## Sample 3

|  | cyan | magenta | yellow | black | red | green | blue |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Price | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |

Required： $\mathbf{3}$ litres of black

1 L yellow +2 L blue $\rightarrow 3$ L black

$$
\begin{aligned}
\text { Answer } & =3+2 * 1 \\
& =5
\end{aligned}
$$

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

| 1 L cyan +1 L magenta | $\rightarrow 2 \mathrm{~L}$ blue |
| :--- | :--- |
| 1 L magenta +1 L yellow | $\rightarrow 2 \mathrm{~L}$ red |
| 1 L cyan +1 L yellow | $\rightarrow 2 \mathrm{~L}$ green |


| 1 L cyan +1 L magenta +1 yellow | $\rightarrow 3 \mathrm{~L}$ black |
| :--- | :--- |
| 1 L red +1 L green +1 L blue | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L cyan +2 L red | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L magenta +2 L green | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L yellow +2 L blue | $\rightarrow 3 \mathrm{~L}$ black |

## Subtasks

For all cases：
$1 \leq N \leq 100000$
$1 \leq$ price of any color per litre $\leq 100$

## Points Constraints

| 111 | $1 \leq N \leq 10$ |  |
| :--- | :--- | :--- |
| 2 | 14 | $S$ is always cyan，magenta or yellow． |
|  |  |  |
|  |  |  |
|  | $N$ is an even number． |  |
| $S$ | $S$ is always red． |  |
| 3 | 23 | $1 \leq N \leq 10$ <br> $S$ |
|  |  | is always red，green or blue． |

$419 \quad 1 \leq N \leq 10$
$N$ is a multiple of 3 ．
$S$ is always black．
$1 \leq N \leq 10$
$S$ is always black．
$66 \quad$ No additional constraints
HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## J211－Paint Shop

## Statistics

| Task | Attempts | Max | Mean | Std Dev | Subtasks |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| J211－Paint Shop | 75 | 100 | 76.84 | 33.51 | 11：69 | 14： 68 | 23： 61 | 19：57 | 27： 48 | 6： 45 |

First solved by ryanjz2024 at 0：14：39
Last solved by dbsic at 2：29：52（8 seconds before the contest ends）

Easiest task among all three junior tasks
More Accepted，More Happiness＾＿＾

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## Solutions

## Subtask 1

$1 \leq N \leq 10$
The color is always cyan，magenta or blue
－We can only obtain these 3 colors by buying them from the shop
－Answer＝price of the color＊ $\mathbf{N}$

## J211－Paint Shop

## Subtask 2

$1 \leq N \leq 10$
$\mathbf{N}$ is an even number
The color is always red
－Option 1：buy $\mathbf{N}$ litres of red directly
－Option 2：buy N／ 2 litres magenta＋N／ 2 litres yellow
－Answer＝min（Option 1，Option 2）

```
1L cyan + 1L magenta }->2\textrm{L}\mathrm{ blue
1L magenta + 1L yellow }->2\textrm{L}\mathrm{ red
1L cyan +1L yellow }->2\textrm{L}\mathrm{ green
```

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## Subtask 3

$1 \leq N \leq 10$
The color is always red，green or blue

Using red as example：
－Option 1：buy $\mathbf{N}$ litres of red directly
－Option 2：buy ceil（ $\mathbf{N} / \mathbf{2}$ ）litres of magenta＋ceil（N／2）litres of yellow
－Enough？

| 1 L cyan +1 L magenta | $\rightarrow 2 \mathrm{~L}$ blue |
| :--- | :--- |
| 1 L magenta +1 L yellow | $\rightarrow 2 \mathrm{~L}$ red |
| 1 L cyan +1 L yellow | $\rightarrow 2 \mathrm{~L}$ green |

HhCo
香洪電胉奥林匹克競赛
Hong Kong Olympiad in Informatics

## Subtask 3

－Of course not，sample 1 already reminds you＾＿＾
－For $\mathbf{N}$ is even，same as subtask 2
－For $\mathbf{N}$ is odd，we consider the followings：
－First $\mathbf{N}-1$ litres： $\min ((\mathbf{N}-1)$＊red，（ $\mathbf{N}-1$ ）／ 2 ＊（magenta＋yellow））
－Last 1 litre：min（red，magenta＋yellow）
－Answer＝answer for $\mathbf{N}$－ $\mathbf{1}$ litres + answer for $\mathbf{1}$ litre
－Same way to deal with green and blue

## J211－Paint Shop

## Subtask 4

$1 \leq N \leq 10$
$\mathbf{N}$ is a multiple of $\mathbf{3}$
The color is always black

$$
\begin{array}{ll}
1 \mathrm{~L} \text { cyan }+1 \mathrm{~L} \text { magenta } & \rightarrow 2 \mathrm{~L} \text { blue } \\
1 \mathrm{~L} \text { magenta }+1 \mathrm{~L} \text { yellow } & \rightarrow 2 \mathrm{~L} \text { red } \\
1 \mathrm{~L} \text { cyan }+1 \mathrm{~L} \text { yellow } & \rightarrow 2 \mathrm{~L} \text { green }
\end{array}
$$

－How many options this time？

| 1 L cyan +1 L magenta +1 L yellow | $\rightarrow 3 \mathrm{~L}$ black |
| :--- | :--- |
| 1 L red +1 L green +1 L blue | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L cyan +2 L red | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L magenta +2 L green | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L yellow +2 L blue | $\rightarrow 3 \mathrm{~L}$ black |

HhCe

## J211－Paint Shop

## Subtask 4

－First，undoubtedly，the 5 given formulas
－But then seems more complicated formulas exist！？

$$
\begin{array}{ll}
1 \mathrm{~L} \text { cyan }+1 \mathrm{~L} \text { magenta } & \rightarrow 2 \mathrm{~L} \text { blue } \\
1 \mathrm{~L} \text { magenta }+1 \mathrm{~L} \text { yellow } & \rightarrow 2 \mathrm{~L} \text { red } \\
1 \mathrm{~L} \text { cyan }+1 \mathrm{~L} \text { yellow } & \rightarrow 2 \mathrm{~L} \text { green }
\end{array}
$$

－ 1 L magenta +1 L yellow $\rightarrow 2 \mathrm{~L}$ red
－Take 1 L red from above， 1 L red +1 L green +1 L blue $\rightarrow 3 \mathrm{~L}$ black
－．．．

```
1L cyan + 1L magenta + 1L yellow }->\mathrm{ 3L black
1L red + 1L green + 1L blue }->\mathrm{ 3L black
1L cyan + 2L red }\quad->\mathrm{ 3L black
1L magenta +2L green 
1L yellow + 2L blue 
```

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## Subtask 4

－In fact，the given formulas are sufficient to get optimal answer
－Do you know why？

## Example

Let＇s prove that magenta＋yellow＋green＋blue isn＇t optimal as an example Denote $\mathbf{m}=$ magenta， $\mathbf{y}=$ yellow， $\mathbf{g}=$ green， $\mathbf{b}=$ blue
－Suppose $\mathbf{g}<\mathbf{b}$ ，we have $(\mathbf{m}+\mathbf{y}+\mathbf{g}+\mathbf{b})>(\mathbf{m}+\mathbf{y}+\mathbf{g}+\mathbf{g})>(\mathbf{m}+\mathbf{g}+\mathbf{g})$
－We can see that $(\mathbf{m}+\mathbf{g}+\mathbf{g})$ is a better formula
－Similar proof can be done for $\mathbf{g} \geq \mathbf{b}$

Remaining proof is left as exercise

| 1 L cyan +1 L magenta +1 L yellow | $\rightarrow 3 \mathrm{~L}$ black |
| :--- | :--- |
| 1 L red +1 L green +1 L blue | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L cyan +2 L red | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L magenta +2 L green | $\rightarrow 3 \mathrm{~L}$ black |
| 1 L yellow +2 L blue | $\rightarrow 3 \mathrm{~L}$ black |

HhCo
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## J211－Paint Shop

## Subtask 4

－Knowing that the given formulas are sufficient to get optimal answer，we just need to consider all of them \＆consider buying black directly
－Option 1：N／ 3 ＊（cyan＋magenta＋yellow）
－Option 2：N／3＊（red＋green＋blue）
－Option 3：N／3＊（cyan＋2＊red）
－Option 4：N／ 3 ＊（magenta＋ 2 ＊green）
－Option 5：N／ 3 ＊（yellow＋ 2 ＊blue）
－Option 6： $\mathbf{N}$＊black

| 1 L cyan +1 L magenta +1 L yellow $\rightarrow 3 \mathrm{~L}$ black |  |
| :---: | :---: |
| 1 L red +1 L green +1 L blue | $\rightarrow$ 3L black |
| 1 L cyan +2 L red | $\rightarrow$ 3L black |
| 1 L magenta +2 L green | $\rightarrow$ 3L black |
| 1 L yellow＋ 2 L blue | $\rightarrow$ 3L black |

－Answer＝min（Option 1，Option 2，．．．，Option 6）

## Subtask 5

$1 \leq N \leq 10$
The color is always black
－ $\mathbf{N}$ is not a multiple of $\mathbf{3}$ anymore
－What do we need to extra handle this time？

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## Subtask 5

－For the remainder of $\mathbf{N} / \mathbf{3}=\mathbf{0}$ ，same as subtask 4
－For the remainder of $\mathbf{N} / \mathbf{3}=\mathbf{1}$ ，what should we do？

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## Subtask 5

－Using similar idea from subtask 3，we consider two parts：
－First（ $\mathbf{N}-\mathbf{1}$ ）litres：same as subtask 4
－Last 1 litre：min（Option 1，Option 2，．．．，Option 6）
－Option 1：cyan＋magenta＋yellow
－Option 2：red＋green＋blue
－Option 3：cyan＋ 2 ＊red
－Option 4：magenta＋ 2 ＊green
－Option 5：yellow＋ 2 ＊blue
－Option 6：black
－Answer＝answer for N－ 1 litres＋answer for 1 litre

## Subtask 5

－The same idea can be applied when the remainder of $\mathbf{N} / \mathbf{3}=\mathbf{2}$ ：
－First（ $\mathbf{N}-\mathbf{2}$ ）litres：same as subtask 4
－Last 2 litre：min（Option 1，Option 2，．．．，Option 6）
－Option 1：cyan＋magenta＋yellow
－Option 2：red＋green＋blue
－Option 3：cyan＋ 2 ＊red
－Option 4：magenta＋ 2 ＊green
－Option 5：yellow＋ 2 ＊blue
－Option 6： 2 ＊black
－Answer＝answer for $\mathbf{N}$－ $\mathbf{2}$ litres + answer for $\mathbf{2}$ litre

## Subtask 6

No additional constraints
－Combine subtask 1 to 5 to get the last 6 points！

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## Some Careless Mistakes

## Pascal：

－Using integer but not longint，losing last 6 points ：（
－ $\operatorname{read}(N, C o l) / r e a d l n(N, C o l)$ leads to extra space
－Col＝＇cyan’

C＋＋：
－Using double to output，resulting in wrong format
－2．9232e＋06

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

## Implementation Tricks

For finding minimum，instead of writing brunches of if＇s，we can make good use of min function and arrays
Example of subtask 5 when remainder of $\mathbf{N} / \mathbf{3}=\mathbf{1}$ ：

```
opt[1] = c + m + y;
opt[2] = r + g + b;
opt[3] = c + 2 * r;
opt[4] = m + 2 * g;
opt[5] = y + 2 * b;
ans[1] = (N - 1) * k;
for (int i = 1; i <= 5; i++)
    ans[1] = min(ans[1], (N - 1) / 3 * opt[i]);
ans[2] = k;
for (int i = 1; i <= 5; i++)
    ans[2] = min(ans[2], opt[i]);
```

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

