
Snakes and Snakes
Author : Alex Tung

Speaker : Jeremy Chow
26/1/2019

Statistics

Statistics
● Attempts : 78
● Max : 100
● Mean : 28.435
● Std Dev : 29.331

● First Solved by Jamie Choi at 0:25
● Highest mean among senior problems

Problem Statment
● Given a board consists of N+1 squares and M “Snakes”
● Each time you can move forward 1 - K squares
● Find the minimum number of moves needed to move from square 0 to square

N
● And determine whether you can do it

Subtask 1
● M = 0
● No snakes on the board
● Just calcuate the answer by math
● Ans = ceil(n / k) = (n - 1) / k + 1

● Time Complexity = O(1)
● Easy 3 points :)

Subtask 2
● K = 1
● Each time you can only move 1 square forward
● If there is any snake, which will bring you backward
● It is impossble to go to square N
● Else you can always move to square N by N moves

● Time Complexity = O(1)
● Easy 4 points :)

Subtask 3
● Observation : There always exist an optimal solution which won’t use the

snakes

GOAL

GOAL

K = 3

Subtask 3
● The problem become….
● Given a board consist of N+1 squares and M of them are forbidden
● Each time you can move forward 1 - K squares
● Find the minimum number of moves required to move from square 0 to

square N / determine whether you can do it

Subtask 3
● K = 2, 2 <= N <= 200000
● N is small
● Just simulate the process
● Notice that it is optimal to go to the farthest square which is not forbidden

Subtask 3
● Let you are now at square i
● If square i+2 is not forbidden, go there
● else if square i+1 is not forbidden, go there
● else return impossible
● Repeat this process until you get to square N

● Time complexity = O(N)

Subtask 4
● K = 2, N could be very large, up to 109

● We can use the fast forward technique
● For each snake, we calculate the number of moves needed to get over it

● Let you are at square x and the snake entry is at square y
● if the parity of x and y is not same, then you can ignore that snake
● if the parity of x and y is same, then you need to do some simple calculations

Subtask 4
● After that, update your position
● After you pass over all M snake, you can calculate the amount of move to go

to square N just like what we did in subtask 1
● You can check the impossible case by checking whether there exist 2

consecutive snake

● Time complexity = O(M)

Subtask 5
● K <= 100, 2 <= N <= 200000
● K can vary now
● But it is not a big deal

● We can use our algorithm in subtask 3
● check K squares instead of 2 squares

Subtask 5
● Let you are now at square i
● If square i+k is not forbidden, go there
● else if square i+k-1 is not forbidden, go there
● else if ……..
● else return impossible
● Repeat this process until you get to square N

● Time complexity = O(N)

Subtask 5
● Why time complexity = O(N) instead of O(NK) ?
● although both is fast enough to pass this subtask

● In every 2 moves, you can always move K or more squares forward
● else it is impossible
● O(K) * O(N / K) = O(N)

● You can also use a O(NK) dynamic programming to pass this subtask

Subtask 6
● 1 <= K <= N <= 109, 0 <= M <= min(N-1, 200000)
● N could be very large

● Just like what we did before
● We can use the fast forward technique to solve this problem

Subtask 6
● Firstly, check the impossible case by checking whether there exist K

consecutive snakes
● Then, for the first snake which is in front of you, with position y
● move to the square x’ which is one move away from the snake

○ i.e. x’ < y, x’ + K >= y

● After that, move one more move, find the farthest square which is not
forbidden and go there

○ can be done by while loop on the snakes

● If you still can’t pass over that snake, i.e. farthest square = y - 1, move one
more move

Subtask 6
● Finally, when there is no snake in front of you, calculate the amount of move

to go to square N just like what we did in subtask 1
● Remeber to check the impossible case

● Time complexity = O(M)

● Be careful about the calculation

THX

