
S193 Solutions

S193 - Alice’s Housekeeper
Author: Percy Wong

Speaker: Susanna Chan

S193 Solutions

Story of S193
Because of the coming exam period, Alice feels very stressful and gets mad
easily. When she is angry, she will scold at her housekeepers, even
worse she may punish them!

You, as one of the housekeepers of Alice, do not want to get punished. One
way to keep your master in a good mood is to serve her favorite dishes as
dinner. You have got a list of K dishes Alice likes, denoted as ...

S193 Solutions

Story of S193
Because of the coming exam period, Alice feels very stressful and gets mad
easily. When she is angry, she will scold at her housekeepers, even
worse she may punish them!

You, as one of the housekeepers of Alice, do not want to get punished. One
way to keep your master in a good mood is to serve her favorite dishes as
dinner. You have got a list of K dishes Alice likes, denoted as ...

Too long didn’t read :P

S193 Solutions

Let’s make it simple...
Given a string s... (*In the following slides, characters of s are 1-indexed*)

Output a string (length = N) derived from s that fulfills the following
requirements:

1. No adjacent characters are equal
2. s[1] != s[N] (since the menu is cyclic)
3. Consists of only the first K lowercase letters
4. Changes the least number of characters in s

If it is impossible to fulfill requirements, output “Impossible”

S193 Solutions

Subtasks
For all cases:
1 ≤ N ≤ 1000000, 2 ≤ K ≤ 26

Subtask 1 (8 points): N = 2

Subtask 2 (21 points): K = 2

Subtask 3 (39 points): 1 ≤ N ≤ 5000

Subtask 4 (32 points): no additional constraints

S193 Solutions

Statistics
Attempts: 81

Mean: 23.271

Standard Deviation: 27.261

First solved by dbsgame (1h 2m)

S193 Solutions

Statistics
Score Distribution

(among attempted
contestants)

S193 Solutions

Subtask 1: N = 2 (8 points)
The strings can be classified into either one of the following 2 cases

Case 1: s[1] = s[2] ➝ Change either s[1] or s[2] to other characters
IF s[1] = ‘a’ ➝ Change s[1] to ‘b’ (final s = “ba”) // initial s = “aa”

ELSE ➝ Change s[1] to ‘a’ (s = “a#”) //(initial s = “##”)

// ‘#’ = any lowercase letters other than ‘a’

Case 2: s[1] != s[2] ➝ Output the original string

For data in this subtask, possible answers always exist.

S193 Solutions

Subtask 2: K = 2 (21 points)
There are only ‘a’s and ‘b’s in s

Key observations

1. There are only 2 possible arrangements
○ “ababab…” and “bababa…”
○ You can’t write ‘correct’ arrangements other than these two :o)

2. When N is an odd number, it is impossible to construct a string that
satisfies the requirements
○ For arrangements above, s[1] is always equal to s[N] when K = 2 and N is odd
○ Example: “aba” and “bab”

S193 Solutions

Subtask 2: K = 2 (21 points)
Based on the observations…

IF N % 2 = 1

Output “Impossible”
ELSE

Construct 2 strings A = “ababab….” and B = “bababa…” (length = N)
Count the number of different characters between the A and s + B and s
Output the one with smaller difference (A / B)

Time complexity: O(N)

S193 Solutions

Subtask 2… Special Case!
In fact, data with K = 2 are special cases in this question that requires special
handling.

There is a general solution for the other cases :D

S193 Solutions

Minimizing the number of changes
We are only concerned about adjacent characters.

Hence for every character, we only need to check its previous and next
characters. We can perform a sequential iteration to check the characters, so
we can just compare the current character with the next character.

To minimize the number of changes, it’s obvious that we don’t need to modify
adjacent characters when they are different. (i.e. s[i] != s[i + 1]). While for
identical ones (s[i] = s[i + 1]), we need to perform some changes to them.

S193 Solutions

Minimizing the number of changes
You may have this question in mind: when we encounter s[i] = s[i + 1], which
character should we modify? s[i] or s[i + 1]?

Observe how we change a subarray (continuous array) of consecutive
characters.

Example 1: “aaaa” (length = 4 ➝ even number)

If we change s[i], resulting string = “baba” [changes = 2]

If we change s[i + 1], resulting string = “abab” [changes = 2]

Hmm… we cannot make a conclusion...

S193 Solutions

Minimizing the number of changes
Example 2: “ddddd” (length = 5 ➝ odd number)

If we change s[i], the resulting string = “adada” [changes = 3]

If we change s[i + 1], the resulting string = “dadad” [changes = 2] :D

* Given that a complete subarray (continuous array) of identical characters is
obtained, when there is s[i] = s[i + 1], we should always change s[i + 1] *

Notice that the next character for s[N] is s[1] :)

A general expression for the next character is s[i MOD N + 1] (1-indexed) or s[(i
+ 1) MOD N] (0-indexed).

S193 Solutions

Subtask 3: 1 ≤ N ≤ 5000 (8 + 21 + 39 = 68 points)
Now you know you should change the latter character when encountering
identical characters.

But… HOW?

S193 Solutions

Subtask 3… Naive solution (WRONG)
For example, s = “aabcdefaaa”

If you naively iterate the string from index 1 to N and modify them as
mentioned, you might obtain “bcbcdefaba”... [changes = 3]

Though you can construct a string with no identical and adjacent characters,
the number of changes is NOT optimal!

What about “babcdefaba”? [changes = 2]

S193 Solutions

Subtask 3: 1 ≤ N ≤ 5000 (8 + 21 + 39 = 68 points)
* Notice we need the COMPLETE subarray to make the aforementioned
method correct. *

If the menu is not cyclic, we can iterate from index 1 of the string. Then we
must encounter all the COMPLETE subarrays with identical characters.

Unfortunately, this menu IS cyclic!

Where is the starting position of the subarray?

S193 Solutions

Subtask 3: 1 ≤ N ≤ 5000 (8 + 21 + 39 = 68 points)
N ≤ 5000… a O(N^2) solution can pass the time limit :D

We know that checking and modifying takes O(N) time complexity, so adding
an additional nested for-loop (loop N times) is still okay.

Recall the problem we are now facing is uncertain starting position of a
continuous array of identical characters.

What we can do is exhaust every character as starting position, do
modifications accordingly and check if the solution is optimal!

S193 Solutions

Subtask 3: 1 ≤ N ≤ 5000 (8 + 21 + 39 = 68 points)
Iterate every position in s (denote the position = j)

Iterate the whole string starting from index j (current string position = i)

Check if changes need to be done

If changes needed ➝ change s[i + 1] such that

s[i] != s[i + 1] and s[i + 1] != s[i + 2]

Increment number of changes

Check if the new string is an optimal solution

Time complexity: O(N^2)

S193 Solutions

Subtask 3: 1 ≤ N ≤ 5000 (8 + 21 + 39 = 68 points)
Turns out when K != 2, possible answers almost always exist.

Except when N = 1…

If N = 1, the output is always “Impossible”!

A corner case can cost you many points :(

S193 Solutions

Subtask 4: No additional constraints (100 points)
If you have passed subtask 3, you are very close to full score!

Task: cut down the time complexity of your code ➝ 10^6… a O(N) solution?

In subtask 3, you tried every position as the starting point.

Indeed, it is unnecessary to try most of the positions. WHY?

S193 Solutions

Subtask 4: No additional constraints (100 points)
There may be many subarray of identical characters, but the only one actually
matters is the one connecting index 1 and index N (For example “aabbbaaa”,
the bolded subarray)

If we start to iterate the whole string starting from the first character of this
subarray, or the first character after this subarray, we can actually encounter
every complete subarray of continuous characters.

S193 Solutions

Subtask 4: No additional constraints (100 points)
Find the first character (position = x) such that s[x] != s[N].

Iterate the string starting from s[x].

When s[i] = s[i + 1], change the character s[i + 1] such that s[i + 1] != s[i] and s[i
+ 1] != s[i + 2] (e.g. “aac” ➝ “abc”)

Time complexity: O(N)

Accepted

