HKOI 2018/19 Solution S192 - Two Towers

Alex Tung alex20030190[at]yahoo.com.hk

26 January, 2019

Table of Contents

(1) The Problem

(2) 26 Giveaway Points

(3) Ideas

4 Full Solution

Background

- Given an $N \times M$ grid.
- Want to build two communications towers (A and B).
- Tower A's power $=P_{A}$; Tower B's power $=P_{B}$.
- Signal strength of tower A at cell X is

$$
\operatorname{Str}_{A}(X):=\max \left(0, P_{A}-M D(\text { tower } A, X)\right)
$$

- MD: Manhattan distance.

$$
M D\left(\left(r_{1}, c_{1}\right),\left(r_{2}, c_{2}\right)\right)=\left|r_{2}-r_{1}\right|+\left|c_{2}-c_{1}\right| .
$$

4	3	2	3	4	5	6
3	2	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	2	3	4	5

Objective

- Build towers at appropriate positions to maximize the signal strength at the worst cell (household).
- Formally, want to maximize

$$
\min _{X}\left[\max \left(\operatorname{Str}_{A}(X), \operatorname{Str}_{B}(X)\right)\right]
$$

Samples

4(B)			5	4						9	8				
5	6	7(A)	6	5					9	10(B)	9				
6	5	6	5	4					8	9	8				
									9	10(A)	9				
									8	9	8				
Samp	le 1:	P_A $=$,						Samp	ple 2: P	A		0, P_B	$B=10$	
1	1(A)														
	1														
3(B)	2														
	1														
Samp	le 5	P_A $=$	P												

Subtasks and Stats

SUBTASKS

For all cases:
$1 \leq N, M \leq 5 \times 10^{8}$
$0 \leq P_{A}, P_{B} \leq 10^{9}$

Points Constraints
$110 \quad P_{A}=0$
2. $14 \quad N=1$
$315 \quad N=2$
$M \geq 2$

Points Constraints
$416 \quad 1 \leq N, M \leq 10$
$5 \quad 22 \quad 1 \leq N, M \leq 2000$
623 No additional constraints

Attempts	Max	Mean	Std Dev	Subtasks					
67	40	10.97	10.889	$10: 44$	$14: 4$	$15: 1$	$16: 14$	$22: 0$	

Table of Contents

(1) The Problem
(2) 26 Giveaway Points
(3) Ideas
4) Full Solution

Subtask 1 (10 pts): Tower A is useless

- Intuitively, the corner cells are hardest to reach.
- Place tower B in the middle, e.g. cell $\left(\left\lceil\frac{N}{2}\right\rceil,\left\lceil\frac{M}{2}\right\rceil\right)$.
- Distance to farthest cell $=\left\lfloor\frac{N}{2}\right\rfloor+\left\lfloor\frac{M}{2}\right\rfloor$. Examples:

- So the answer is $\max \left(0, P_{B}-\left\lfloor\frac{N}{2}\right\rfloor-\left\lfloor\frac{M}{2}\right\rfloor\right)$.

Subtask 4 (16 pts): N and M are as small as 20

- Well, just exhaust the $(N M)^{2}$ possible positions of towers A and $\left.\mathrm{B}:\right)$
- Checking can be done in $O(N M)$.
- Write six nested loops, get 16 points. What a bargain!
- Time complexity: $O\left(N^{3} M^{3}\right)$.

Table of Contents

(1) The Problem
(2) 26 Giveaway Points
(3) Ideas

4) Full Solution

Assumptions

Assume:

- $N \leq M$,
- $P_{A} \leq P_{B}$.

Idea 1: Optimization \longrightarrow Feasibility

- Let

$$
\operatorname{Good}(V)= \begin{cases}1, & \text { if an answer of } V \text { is attainable; } \\ 0, & \text { otherwise. }\end{cases}
$$

- Then:

$$
\operatorname{Good}(0)=\cdots=\operatorname{Good}(\text { Answer })=1 ;
$$

$\operatorname{Good}($ Answer +1$)=\operatorname{Good}($ Answer +2$)=\ldots=0$.

- Problem transformation (for $V>0$):

Feasibility Problem (Finding Good(V))

Given $\operatorname{rad}_{A}:=P_{A}-V, \operatorname{rad}_{B}:=P_{B}-V$ (can be -ve).
Determine positions for towers A and B so that, for all cells X, either $M D($ tower $\mathrm{A}, X) \leq \operatorname{rad}_{A}$ or $M D($ tower $\mathrm{B}, X) \leq \operatorname{rad}_{B}$.

Illustration

Becomes a covering by tilted squares problem.

Idea 2: Enough to cover all boundary cells

We have this powerful and surprising observation:

Theorem 1

For two (in fact ≤ 3) tilted squares covering a rectangular grid, covering all boundary cells implies covering the whole grid!!!

Here is a simple proof (proof by contradiction).

Each tilted square can only cover one V cell, if cell X cannot be covered.

Idea 3: Three configurations

Case 2: Tower B covers the whole grid

Idea 3: Three configurations

- Need to check whether a covering is possible, using one of the configurations.
- Cases 2 and 3 are easy! Now we focus on case 1 .

Idea 4: Greedy, greedy, greedy

Greedy Idea 1

Prefer covering short (horizontal) edge to covering long (vertical) edge.
Illustration:

In the right configuration, it takes a smaller tilted square to cover the rest.

Idea 4: Greedy, greedy, greedy

Greedy Idea 2

Go as far from corners as possible.
Illustration:

Idea 4: Greedy, greedy, greedy

Greedy Idea 3

Prefer closer to the middle row.
Illustration:

Table of Contents

(1) The Problem
(2) 26 Giveaway Points
(3) Ideas
4) Full Solution

Piecing them all together

Recall our beautiful ideas:
(1) Optimization \longrightarrow Feasibility
(2) Enough to cover all boundary cells
(3) Three configurations
(C) Greedy, greedy, greedy

Below we describe an $O(\log R A N G E)$ solution.
Remember the assumptions $N \leq M$ and $P_{A} \leq P_{B}$.

Step 1: Binary search on answer

CAUTION: There are so many binary search styles. Convert below to your favourite one.

Set $L:=0, R:=10^{9}+1$
While $L+1<R$
Set $V:=\left\lfloor\frac{L+R}{2}\right\rfloor$
If $\operatorname{Good}(V)$ then set $L:=V$
Else set $R:=V$
Set Ans $:=L$
Run Good(Ans) to get tower positions
Output answer and tower positions

Step 2: Handle easy cases

If $V=0$
Set $A=B=(1,1)$
Return True
Set $\operatorname{rad}_{A}:=P_{A}-V, \operatorname{rad}_{B}:=P_{B}-V$
If $\operatorname{rad}_{B} \geq\left\lfloor\frac{N}{2}\right\rfloor+\left\lfloor\frac{M}{2}\right\rfloor$
Case 2 works!
Set $A=(1,1), B=\left(\left\lceil\frac{N}{2}\right\rceil,\left\lceil\frac{M}{2}\right\rceil\right)$
Return True
If (N and M are even) AND $\left(\operatorname{rad}_{B} \geq \frac{N}{2}+\frac{M}{2}-1\right)$ AND $\left(\operatorname{rad}_{A} \geq 0\right)$
Case 3 works!
Set $A=(N, M), B=\left(\frac{N}{2}, \frac{M}{2}\right)$
Return True

Step 3: Check if short edges can be covered

If $\mathrm{rad}_{A}<\left\lfloor\frac{N}{2}\right\rfloor$
Return False

Step 4: Choose best places for towers

Suppose $A=\left(r_{A}, c_{A}\right), B=\left(r_{B}, c_{B}\right)$.
Set $r_{A}:=\left\lceil\frac{N}{2}\right\rceil, r_{B}:=\left\lceil\frac{N+1}{2}\right\rceil \quad$ (Greedy Ideas $1+3$)
Set $c_{A}:=\min \left(M, 1+\left(\operatorname{rad}_{A}-\left\lfloor\frac{N}{2}\right\rfloor\right)\right)$
Set $c_{B}:=\max \left(1, M-\left(\operatorname{rad}_{B}-\left\lfloor\frac{N}{2}\right\rfloor\right)\right) \quad$ (Greedy Idea 2)

Step 5: Check if top and bottom rows are covered

For row 1:

- Rightmost cell covered by A is $c_{A}+\left(\operatorname{rad}_{A}-\left(r_{A}-1\right)\right)$
- Leftmost cell covered by B is $c_{B}-\left(\operatorname{rad}_{B}-\left(r_{B}-1\right)\right)$

For row N :

- Rightmost cell covered by A is $c_{A}+\left(\operatorname{rad}_{A}-\left(N-r_{A}\right)\right)$
- Leftmost cell covered by B is $c_{B}-\left(\operatorname{rad}_{B}-\left(N-r_{B}\right)\right)$

All cells covered $\Longleftrightarrow \operatorname{right} A \geq$ left $B-1$. By symmetry, it is enough to check row 1 .

Example 1 (for Steps 4-5)

Set $r_{A}:=\left\lceil\frac{N}{2}\right\rceil=\left\lceil\frac{5}{2}\right\rceil=3$
Set $r_{B}:=\left\lceil\frac{N+1}{2}\right\rceil=\left\lceil\frac{5+1}{2}\right\rceil=3$
$\left\lfloor\frac{N}{2}\right\rfloor=\left\lfloor\frac{5}{2}\right\rfloor=2$
Set $c_{A}:=\min \left(M, 1+\left(\operatorname{rad}_{A}-\left\lfloor\frac{N}{2}\right\rfloor\right)\right)$

$$
=\min (8,1+(3-2)) \quad=2
$$

Set $c_{B}:=\max \left(1, M-\left(\operatorname{rad}_{B}-\left\lfloor\frac{N}{2}\right\rfloor\right)\right)$

$$
=\max (1,8-(4-2))=6
$$

Example 1 (cont'd)

For row 1:

- right $A:=c_{A}+\left(\operatorname{rad}_{A}-\left(r_{A}-1\right)\right)=2+(3-(3-1))=3$
- left $B:=c_{B}-\left(\operatorname{rad}_{B}-\left(r_{B}-1\right)\right)=6-(4-(3-1))=4$

Indeed right $A \geq$ left $B-1$. Return True.

Example 2 (for Steps 4 - 5)

Set $r_{A}:=\left\lceil\frac{N}{2}\right\rceil=\left\lceil\frac{6}{2}\right\rceil=3$
Set $r_{B}:=\left\lceil\frac{N+1}{2}\right\rceil=\left\lceil\frac{6+1}{2}\right\rceil=4$
$\left\lfloor\frac{N}{2}\right\rfloor=\left\lfloor\frac{6}{2}\right\rfloor=3$
Set $c_{A}:=\min \left(M, 1+\left(\operatorname{rad}_{A}-\left\lfloor\frac{N}{2}\right\rfloor\right)\right)$

$$
=\min (8,1+(4-3))=2
$$

Set $c_{B}:=\max \left(1, M-\left(\operatorname{rad}_{B}-\left\lfloor\frac{N}{2}\right\rfloor\right)\right)$

$$
=\max (1,8-(4-3))=7
$$

Example 2 (cont'd)

For row 1:

- right $A:=c_{A}+\left(\operatorname{rad}_{A}-\left(r_{A}-1\right)\right)=2+(4-(3-1))=4$
- left $B:=c_{B}-\left(\operatorname{rad}_{B}-\left(r_{B}-1\right)\right)=7-(4-(4-1))=6$

Return False since right $A<$ left $B-1$.

Remark

(1) An $O(1)$ solution exists. Instead of binary search, just directly solve inequalities arising from the covering conditions. (Nasty!)
(2) To make the arguments in Idea 4: Greedy, greedy, greedy rigorous, again you need to write down inequalities. Proof is left as exercise. (Nasty!!)

