The Problem	26 Giveaway Points	Ideas	Full Solution

HKOI 2018/19 Solution S192 - Two Towers

Alex Tung alex20030190[at]yahoo.com.hk

26 January, 2019

The Problem	26 Giveaway Points	ldeas	Full Solution
●0000	000	000000000	

Table of Contents

2 26 Giveaway Points

4 Full Solution

- (日)

< ∃ ►

The Problem	26 Giveaway Points	ldeas	Full Solution
o●ooo	000	000000000	
Background			

- Given an $N \times M$ grid.
- Want to build two communications towers (A and B).
- Tower A's power = P_A ; Tower B's power = P_B .
- Signal strength of tower A at cell X is

 $Str_A(X) := \max(0, P_A - MD(\text{tower } A, X)).$

• MD: Manhattan distance. $MD((r_1, c_1), (r_2, c_2)) = |r_2 - r_1| + |c_2 - c_1|.$

The Problem	26 Giveaway Points	ldeas	Full Solution
00●00	000	000000000	
Objective			

- Build towers at appropriate positions to maximize the signal strength at the worst cell (household).
- Formally, want to maximize

 $\min_{X} \left[\max(Str_A(X), Str_B(X)) \right]$

The Problem 000●0			26 oc		vay Poin			deas					Full Solu	tion 000000
Sample	es													
	4(B)	5	6	5	4			8	9	8				
	5	6	7(A)	6	5			9	10(B)	9				
	6	5	6	5	4			8	9	8				
								9	10(A)	9				
								8	9	8				
														-
	Samp	ole 1:	P_A =	= 7, P_	_B = 0		Si	am	ple 2: P	_A =	10, P_	_B = 1(0	-
	4	2 (2)				 								-
		1(A)				 								-
_	2(P)	2												-
	2	1												
	Sam	ole 5:	PA=	= 1. P	B = 3									-

イロト イヨト イヨト イヨト

The Problem	26 Giveaway Points	ldeas	Full Solution
0000●	000	000000000	

Subtasks and Stats

SUBTASKS

For all cases: $1 \leq N, M \leq 5 imes 10^8$ $0 \leq P_A, P_B \leq 10^9$

	Points	Cor	straints				Points	Constr	aints				
1	10	$P_A = 0$			4	16	$1 \leq N, M \leq 10$						
2	14	N = 1			5	22	$1 \leq N, M \leq 2000$						
3	15	N = M]	N=2 $M\geq 2$		6	23	No additional constraints						
Task			Attempts	Max	Mean	Std Dev			S	ubtasks			
S192 -	Two Towe	ers	67	40	10.97	10.889	10: 44	14:4	15: 1	16: 14	22:0	23: 0	

イロト イヨト イヨト イヨ

The Problem	26 Giveaway Points	Ideas	Full Solution
	000		

Table of Contents

4 Full Solution

The Problem	26 Giveaway Points	Ideas	Full Solution
	000		

Subtask 1 (10 pts): Tower A is useless

- Intuitively, the corner cells are hardest to reach.
- Place tower B in the middle, e.g. cell $\left(\left\lceil \frac{N}{2} \right\rceil, \left\lceil \frac{M}{2} \right\rceil \right)$.
- Distance to farthest cell = $\lfloor \frac{N}{2} \rfloor + \lfloor \frac{M}{2} \rfloor$. Examples:

• So the answer is $\max(0, P_B - \lfloor \frac{N}{2} \rfloor - \lfloor \frac{M}{2} \rfloor)$.

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	00●	000000000	

Subtask 4 (16 pts): N and M are as small as 20

- Well, just exhaust the $(NM)^2$ possible positions of towers A and B :)
- Checking can be done in O(NM).
- Write six nested loops, get 16 points. What a bargain!
- Time complexity: $O(N^3M^3)$.

The Problem	26 Giveaway Points	Ideas	Full Solution
00000	000	•00000000	

Table of Contents

The Problem

2 26 Giveaway Points

4 Full Solution

The Problem	26 Giveaway Points	Ideas	Full Solution
00000	000	o●oooooooo	
A			

Assumptions

Assume:

- $N \leq M$,
- $P_A \leq P_B$.

メロト メポト メヨト メヨト

The Problem	26 Giveaway Points	Ideas	Full Solution
		00000000	

Idea 1: Optimization \longrightarrow Feasibility

Let

$$Good(V) = \begin{cases} 1, & \text{if an answer of V is attainable;} \\ 0, & \text{otherwise.} \end{cases}$$

Then:

$$Good(0) = \cdots = Good(Answer) = 1;$$

 $Good(Answer + 1) = Good(Answer + 2) = \dots = 0.$

• Problem transformation (for V > 0):

Feasibility Problem (Finding Good(V))

Given $rad_A := P_A - V$, $rad_B := P_B - V$ (can be -ve). Determine positions for towers A and B so that, for all cells X, either MD(tower A, X) $\leq rad_A$ or MD(tower B, X) $\leq rad_B$.

A D F A B F A B F A B

Т 0	he Pi 0000	roble O						26 (000	Givea D	way I	Point					Idea 000	is 0●00	0000	00			F	ull S	Soluti 2000	
I	llu	st	rat	io	n																				
	1																								
					1																				
				1	2	1								_			_								
			1	2	3	2	1									-					(No	thin	g)		
				1	2	1									-										
					1										_										
					1																				
				1	2	1																			
			1	2	3	2	1																		
		1	2	3	4	3	2	1																	
	1	2	3	4	5	4	3	2	1									_							
		1	2	3	4	3	2	1									_								
			1	2	3	2	1																		
				1	2	1									_										
					1										_										
			Ор	timiz	ation	Probl	lem					Feas	ibilit	y Pro	olem,	V = 1				Feasil	oility I	Prob	lem,	V = 4	

Becomes a covering by tilted squares problem.

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	0000●00000	

Idea 2: Enough to cover all boundary cells

We have this powerful and surprising observation:

Theorem 1

For two (in fact \leq 3) tilted squares covering a rectangular grid, covering all boundary cells implies covering the whole grid!!!

Here is a simple proof (proof by contradiction).

Each tilted square can only cover **one** V cell, if cell X cannot be covered.

Alex	lung

The Problem	26 Giveaway Points	Ideas	Full Solution
		000000000	

Idea 3: Three configurations

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000●000	

Idea 3: Three configurations

- Need to check whether a covering is possible, using one of the configurations.
- Cases 2 and 3 are easy! Now we focus on case 1.

The Problem	26 Giveaway Points 000	ldeas 0000000●00	Full Solution

Idea 4: Greedy, greedy, greedy

Greedy Idea 1

Prefer covering short (horizontal) edge to covering long (vertical) edge.

Illustration:

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	ooooooooooo	

Idea 4: Greedy, greedy, greedy

Greedy Idea 2

Go as far from corners as possible.

Illustration:

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	00000000●	

Idea 4: Greedy, greedy, greedy

Greedy Idea 3

Prefer closer to the middle row.

Illustration:

★ ∃ ▶

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000000	•000000000000

Table of Contents

The Problem

2) 26 Giveaway Points

3 Ideas

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000000	

Piecing them all together

Recall our beautiful ideas:

- Enough to cover all boundary cells
- Three configurations
- Greedy, greedy, greedy

Below we describe an $O(\log RANGE)$ solution.

Remember the assumptions $N \leq M$ and $P_A \leq P_B$.

00000 000 0000000		
		000000000000000000000000000000000000000

Step 1: Binary search on answer

CAUTION: There are so many binary search styles. Convert below to your favourite one.

Set L := 0, $R := 10^9 + 1$ While L + 1 < RSet $V := \lfloor \frac{L+R}{2} \rfloor$ If Good(V) then set L := VElse set R := V

Set Ans := LRun Good(Ans) to get tower positions Output answer and tower positions

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000000	

Step 2: Handle easy cases

If V = 0Set A = B = (1, 1)Return True

Set $rad_A := P_A - V$, $rad_B := P_B - V$

If $rad_B \ge \lfloor \frac{N}{2} \rfloor + \lfloor \frac{M}{2} \rfloor$ Case 2 works! Set $A = (1, 1), B = (\lceil \frac{N}{2} \rceil, \lceil \frac{M}{2} \rceil)$ Return True

If (N and M are even) AND $(rad_B \ge \frac{N}{2} + \frac{M}{2} - 1)$ AND $(rad_A \ge 0)$ Case 3 works! Set $A = (N, M), B = (\frac{N}{2}, \frac{M}{2})$ Return True

.

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000000	

Step 3: Check if short edges can be covered

If $rad_A < \lfloor \frac{N}{2} \rfloor$ Return False

< ∃ ►

The Problem	26 Giveaway Points	Ideas	Full Solution
			000000000000

Step 4: Choose best places for towers

Suppose
$$A = (r_A, c_A), B = (r_B, c_B).$$

Set
$$r_A := \lceil \frac{N}{2} \rceil$$
, $r_B := \lceil \frac{N+1}{2} \rceil$ (Greedy Ideas 1 + 3)
Set $c_A := \min(M, 1 + (rad_A - \lfloor \frac{N}{2} \rfloor))$
Set $c_B := \max(1, M - (rad_B - \lfloor \frac{N}{2} \rfloor))$ (Greedy Idea 2)

000000 000 00000000 00000000	The Problem	26 Giveaway Points	Ideas	Full Solution
				000000000000

Step 5: Check if top and bottom rows are covered

For row 1:

- Rightmost cell covered by A is $c_A + (rad_A (r_A 1))$
- Leftmost cell covered by B is $c_B (rad_B (r_B 1))$

For row N:

- Rightmost cell covered by A is $c_A + (rad_A (N r_A))$
- Leftmost cell covered by B is $c_B (rad_B (N r_B))$

All cells covered \iff right $A \ge left B - 1$. By symmetry, it is enough to check row 1.

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000000	

Example 1 (for Steps 4 - 5)

Set
$$r_A := \lceil \frac{N}{2} \rceil = \lceil \frac{5}{2} \rceil = 3$$

Set $r_B := \lceil \frac{N+1}{2} \rceil = \lceil \frac{5+1}{2} \rceil = 3$
 $\lfloor \frac{N}{2} \rfloor = \lfloor \frac{5}{2} \rfloor = 2$
Set $c_A := \min(M, 1 + (rad_A - \lfloor \frac{N}{2} \rfloor))$
 $= \min(8, 1 + (3 - 2)) = 2$
Set $c_B := \max(1, M - (rad_B - \lfloor \frac{N}{2} \rfloor))$
 $= \max(1, 8 - (4 - 2)) = 6$

Alex Tung

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000000	
Example 1 (cont'd)		

For row 1:

•
$$rightA := c_A + (rad_A - (r_A - 1)) = 2 + (3 - (3 - 1)) = 3$$

• left
$$B := c_B - (rad_B - (r_B - 1)) = 6 - (4 - (3 - 1)) = 4$$

Indeed *rightA* \geq *leftB* - 1. Return True.

() 《문) 《문

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000000	

Example 2 (for Steps 4 - 5)

Set
$$r_A := \lceil \frac{N}{2} \rceil = \lceil \frac{6}{2} \rceil = 3$$

Set $r_B := \lceil \frac{N+1}{2} \rceil = \lceil \frac{6+1}{2} \rceil = 4$
 $\lfloor \frac{N}{2} \rfloor = \lfloor \frac{6}{2} \rfloor = 3$
Set $c_A := \min(M, 1 + (rad_A - \lfloor \frac{N}{2} \rfloor))$
 $= \min(8, 1 + (4 - 3)) = 2$
Set $c_B := \max(1, M - (rad_B - \lfloor \frac{N}{2} \rfloor))$
 $= \max(1, 8 - (4 - 3)) = 7$

イロト イヨト イヨト イヨ

The Problem	26 Giveaway Points 000	Ideas 000000000	Full Solution		
Example 2 (cont'd)					

Example 2 (cont'd)

For row 1:

•
$$rightA := c_A + (rad_A - (r_A - 1)) = 2 + (4 - (3 - 1)) = 4$$

•
$$leftB := c_B - (r_B - (r_B - 1)) = 7 - (4 - (4 - 1)) = 6$$

Return False since rightA < leftB - 1.

• • = • •

The Problem	26 Giveaway Points	ldeas	Full Solution
00000	000	000000000	
Remark			

- An O(1) solution exists. Instead of binary search, just directly solve inequalities arising from the covering conditions. (Nasty!)
- To make the arguments in Idea 4: Greedy, greedy, greedy rigorous, again you need to write down inequalities. Proof is left as exercise. (Nasty!!)