
S191 - Unstoppable Onslaught

S191 - Unstoppable Onslaught
Percy Wong {percywtc}

1

S191 - Unstoppable Onslaught

Background
Author: percywtc

Setter: percywtc, microtony

2

S191 - Unstoppable Onslaught

The Problem
Given an R × C grid with obstacles

Sion, initially at (1, 1), can only:

● goes upwards by 1
● goes rightwards by 1

You have to block Sion from going to (R, C)

3

S191 - Unstoppable Onslaught

Statistics
0points 13 + 0 + 1 + 0 = 14
12points 8 + 0 + 0 + 0 = 8
21points 22 + 15 + 9 + 3 = 49
41points 0 + 0 + 4 + 1 = 5
66points 0 + 1 + 0 + 0 = 1
100points 0 + 0 + 1 + 4 = 5

First solved by dbsgame at 1h 1m 17s

4

S191 - Unstoppable Onslaught

Subtask 2
It is given that R = C = 2

● there are only 4 different cases
● we must place obstacles on the two corners

5

2
1 2
2 1

1
1 2

1
2 1

0

INPUT

OUTPUT

S191 - Unstoppable Onslaught

Subtask 1
It is given that N = 0, meaning that there are no obstacles initially

Key observation

● The answer must be AT MOST 2
● we can always block Sion by placing 2 obstacles around him (or the Nexus)

6

S191 - Unstoppable Onslaught

Subtask 1
It is given that N = 0, meaning that there are no obstacles initially

Key observation

● the answer must be AT MOST 2
● we can always block Sion by placing 2 obstacles around him (or the Nexus)

When N = 0,

● we should always place 2 obstacles…
● except when R = 1 or C = 1

7

S191 - Unstoppable Onslaught

Subtask 3
With the observation that the answer must not exceed 2, meaning that…

● we can just check if the answer could be 0,
● if not 0… could the answer be 1
● otherwise, the answer must be 2

8

S191 - Unstoppable Onslaught

Subtask 3
With the observation that the answer must not exceed 2, meaning that…

● we can just check if the answer could be 0,
● if not 0… could the answer be 1
● otherwise, the answer must be 2

this part is easy, we can just simulate if (R, C) is reachable

● breadth first search (BFS)
● nested for-loop from the bottom row
● ...

9

O(RC)

S191 - Unstoppable Onslaught

Subtask 3
With the observation that the answer must not exceed 2, meaning that…

● we can just check if the answer could be 0,
● if not 0… could the answer be 1
● otherwise, the answer must be 2

this part is easy as well, we can just output:

2
1 2
2 1

10

S191 - Unstoppable Onslaught

Subtask 3
With the observation that the answer must not exceed 2, meaning that…

● we can just check if the answer could be 0,
● if not 0… could the answer be 1
● otherwise, the answer must be 2

so, we can try to exhaust every non-occupied cell

● try to place an obstacle on that cell
● re-run the simulation (BFS, nested for-loop, …)

11

S191 - Unstoppable Onslaught

Subtask 3
With the observation that the answer must not exceed 2, meaning that…

● we can just check if the answer could be 0,
● if not 0… could the answer be 1
● otherwise, the answer must be 2

so, we can try to exhaust every non-occupied cell …...O(RC)

● try to place an obstacle on that cell …...O(1)
● re-run the simulation (BFS, nested for-loop, …) …...O(RC)

Overall Time Complexity: O(R2C2)

12

S191 - Unstoppable Onslaught

Full Solution
● if not 0… could the answer be 1

there are several ways to solve the problem...

13

S191 - Unstoppable Onslaught

Full Solution - 1st idea

14

First run BFS (or something similar) to find the reachability of each cell from (1, 1)

We can perform the same thing starting from (R, C)

● the directions are reversed too… so they are “downwards” and “leftwards”
● this reachability of (R, C) to (i, j) is quivalent to

○ reachability of (i, j) to (R, C) by moving “upwards” and “rightwards”

S191 - Unstoppable Onslaught

Full Solution - 1st idea
First run BFS (or something similar) to find the reachability of each cell from (1, 1)

We can perform the same thing starting from (R, C)

● the directions are reversed too… so they are “downwards” and “leftwards”
● this reachability of (R, C) to (i, j) is quivalent to

○ reachability of (i, j) to (R, C) by moving “upwards” and “rightwards”

15

T

#

#

#

S

T

#

#

#

S

T

#

#

#

S

S191 - Unstoppable Onslaught

Full Solution - 1st idea
We can do AND operation on the two “reachable” arrays

● the resultant cell is TRUE only if
○ it’s reachable from (1, 1)
○ it can reach (R, C)
○ we can pass through this cell while going from (1, 1) to (R, C)

● when is it a MUST?

16

T

#

#

#

S

T

#

#

#

S

T

#

#

#

S

S191 - Unstoppable Onslaught

Full Solution - 1st idea
● the resultant cell is TRUE only if

○ it’s reachable from (1, 1)
○ it can reach (R, C)
○ we can pass through this cell while going from (1, 1) to (R, C)

● when is it a MUST?
○ if at some diagonal ↘, there is exactly one TRUE cell (except S and T)
○ we must have to pass through this cell

● why?
○ as on the path from (1, 1) to (N, M)
○ we reach exactly one cell on each diagonal ↘

17

T

#

#

#

S

S191 - Unstoppable Onslaught

Full Solution - 1st idea
● if at some diagonal ↘, there is exactly one TRUE cell (except S and T)
● we must have to pass through this cell

so we can just block this cell :)

what if there does not exist such cell? must the answer be 2?

● YES

18

T

#

#

#

S

S191 - Unstoppable Onslaught

Full Solution - 2nd idea
Find the uppest and lowest possible path that can reach (R, C) from (1, 1)

● how to find these paths?
● we still have to build the “reachable” arrays
● greedily choose the next step

19

T

#

#

#

S #

T

#

#

#

S #

T

#

#

#

S #

S191 - Unstoppable Onslaught

Full Solution - 2nd idea
Find the uppest and lowest possible path that can reach (R, C) from (1, 1)

if they intersect at some cell (except S and T)

● that’s a MUST cell
● that’s the answer too

20

T

#

#

#

S #

T

#

#

#

S #

T

#

#

#

S #

