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tl;dr
Given a lower triangular 0-1 matrix with length N. There is K 1-element in the 
matrix. A good matrix is defined as :

Element in (i, j) is 1 if and only if elements in (i + 1, j) and (i + 1, j) are also 1.

Find out how many 0-element in the matrix you need to change to 1 to make the 
matrix good.



Subtask 1 (K = 1)
output ((1 + (n - i + 1)) * (n - i + 1)) / 2

as it is equal 1 + 2 + … + (n - i + 1) (sum of arithmetic sequence)



Subtask 2
Like subtask 1, calculate the area of the two triangle, then subtract the area that is 
counted twice. There are three case,

1. the repeated area is triangle 1
2. the repeated area is triangle 2
3. a sub triangle of triangle 1, 2
4. no repeated area

We could use some “ifs” to determine which case it is, 1,2,4 is easy. Case 3 need 
some calculation.



Subtask 3 (N = 2)
um…. there is only 3 element… only two cases… as K >= 1, it implies answer 
equals 3 - K.



Subtask 4 (N <= 20)
Almost every brute force solution could pass this.

For example, we could write a recursion

need_to_be_one(i, j) 

if (i == N)



Subtask 5 (N <= 3000)
We could come up with a O(N^2) solution:

1. We iterate from the triangle top to bottom, if element(i, j) is 1, then, of course, 
element(i + 1, j) and element(i + 1, j + 1) must be 1.

2. We iterate from bottom to top, if element(i + 1, j) and element(i + 1, j + 1) then 
element(i, j) must be 1.

Why this work? Our first step would determine the final state of the bottomest row. 
Then we go from bottom to top and finalize every row.



Subtask 6 (N <= 10^6)
Subtask 5 could give us some inspiration. For every combination of the state of 
the bottomest row, there is only one unique good matrix with that specific last row. 
(Don’t fully believe it first, think about it yourself)

For every (i, j) that the element is 1, it would turn every element in [j, j + (n - i)] of 
the last row to 1. (validate it with subtask 5).

We could divide the last row into some segments (without intersection). Notice 
every segment would then build up a sub-triangle in the final state, and every 
segment’s sub-triangle would be mutually exclusive. We could use some formula 
similar to subtask 1 to calculate the triangle area.



Subtask 6 (N <= 10^6)
Now the problem become how to find the segments. As N <= 10^6, we need to 
have some O(N) or O(N log N) method to find them. One way is to use delta array 
(partial sum).

For every (i, j) that element(i, j) is 1, we add 1 to A[j, j + (N - i)]. At last, the 
segments would be the consecutive element in A that is >= 1. Now problem 
reduced to how to add value to an interval efficiently. Delta array is a good trick to 
implement this. For every (i, j) that element(i, j) is 1, add 1 to delta[j] and -1 to 
delta[j + (N - i)]. Then iterate p from 2 to N and add delta[p - 1] to delta[p] for 1 < p 
<= N.

More about delta array (partial sum) 
https://assets.hkoi.org/training2018/optimization.pdf

https://assets.hkoi.org/training2018/optimization.pdf


Full solution
Full solution is based on subtask 6, we have to find the segments more efficiently. 

For every (i, j) that element(i, j) is 1, we transform them to segment [j, j + (N - i)]. 
Then we union segments if they have intersection. 

How to do? 

First we could sort the segment by their left boundary, then iterate all segment. We 
maintain a union segment [L, R]. Let the current iterated segment be [X, Y]. 

If X > R, this segment has no intersection with previous segments, we add 
segment [L, R] to our final segment set and change L to X and R to Y.



Full Solution
If X < R, we update R to max(R, Y), union this segment with previous segments.

We then use the final segments set to calculate answer just as subtask 6.


