
J192 - BIGGER, BETTER
PROBLEM IDEA BY ALEXPOON

PROBLEM SET BY CHARLIE LI

AGENDA

Å1. Problem statement & Statistics

Å2. Solution for subtask 1

Å3. Solution for K is odd

Å4. General Solution

PROBLEM STATEMENT

PROBLEM BACKGROUND

Å1. Given N, K and an array with N integers

Å2. Choose K integers among them

Å3. Substitute that K integers by the median of them

Å4. Find the maximum total sum of the array can be attained

Å5. Output the K integers you choose

PROBLEM BACKGROUND

ÅExample: N = 7, K = 3, array = {1, 3, 4, 8, 9, 10, 13}

ÅYou may choose {1, 4, 8} Ą {4, 4, 4} Ą {3, 4, 4, 4, 9, 10, 13}, sum = 47

ÅOr you may choose {1, 8, 13} Ą {8, 8, 8} Ą {3, 4, 8, 8, 8, 9, 10}, sum = 50

ÅBut the optimal way is {1, 9, 10} Ą {9, 9, 9} Ą {3, 4, 8, 9, 9, 9, 13}, sum = 55

ÅIn this sample, sum = 55 is optimal, so you should output 1, 9, 10

PROBLEM BACKGROUND

ÅExample: N = 4, K = 2, array = {1, 3, 4, 8}

ÅYou may choose {1, 3} Ą {2, 2} Ą {2, 2, 4, 8}, sum = 16

ÅOr you may choose {1, 4} Ą {2.5, 2.5} Ą {2.5, 2.5, 3, 8}, sum = 16

ÅIn fact, the optimal sum can be attained is 16

ÅSo, you may output 1, 3 or 1, 4 or other combinations attain 16

PROBLEM SUBTASK

Å18 marks for N <= 100, K = 3

Å27 marks for K <= N <= 4000 and K is odd

Å21 marks for K <= N <= 4000 and K may be even

Å19 marks for K <= N <= 500000 and K is odd

Å15 marks for K <= N <= 500000 and K may be even

Å

STATISTIC AND EXPECTATION

Å12 people get 18 marks (subtask 1)

Å5 people get 45 marks (subtask 1 + 2)

Å1 person gets 64 marks (subtask 1 + 2 + 4) Ą K is odd

Å1 person gets 85 marks (subtask 1 + 2 + 3 + 4)

Å6 people get full marks

ÅOut of 54 people attempted (29 people get 0 L)

STATISTIC AND EXPECTATION

ÅAverage = 22.037 (highest among 4 tasks)

ÅAttempt = 54

ÅIt is close to my expectation. However, I expect more people can pass subtask 1 L

ÅSome candidates get WAs because of some minor common mistakes

SOLUTION FOR SUBTASK 1
- IDEA

- SOLUTION SKETCH

- INPLEMENTATION

SOLUTION 1 - IDEA

ÅSubtask 1 is very special one where K = 3 (which is a very small constant)

ÅòPure exhaustionó solution works

Å(Exhaustion == brute force == try all combination)

SOLUTION 1 - IDEA

ÅTry all combination Ą choose any K integers among all N integers

ÅE.g. N = 5, K = 3, array = {1, 3, 4, 8, 9}

ÅTry to choose

{1, 3, 4}, {1, 3, 8}, {1, 3, 9}, {1, 4, 8}, {1, 4, 9}

{1, 8, 9}, {3, 4, 8}, {3, 4, 9}, {3, 8, 9}, {4, ,8, 9}

SOLUTION 1- IDEA

ÅFor subtask 1, N <= 100 and K = 3

ÅTotal number of different combination = C(100, 3) = 161700

ÅComputer can easily try up to 10^7 different combinations in 1 second!

ÅSo this works for subtask 1

SOLUTION 1- SOLUTION SKETCH

1. Iterate any three numbers in the array

2. In each iteration,

2.1. Find the median of the three selected numbers

2.2. Find the sum after transforming the three numbers to their median

2.3. Record the maximum sum can be obtained

2.4. Also record choosing which three numbers can obtain the maximum sum

SOLUTION 1 ðIMPLEMENTATION ðSTEP 1

ÅWe can use 3 nested for loops to exhaust which 3 numbers to choose

for (int i = 1; i <= n; i ++)

for (int j = i + 1 ; j <= n; j++)

for (int k = j + 1 ; j <= n; k++)

SOLUTION 1 ðIMPLEMENTATION ðSTEP 2.1

ÅThen, find the median of the three chosen number

sort(a + 1, a + 1 + n);

for (int i = 1; i <= n; i ++)

for (int j = i + 1 ; j <= n; j++)

for (int k = j + 1 ; j <= n; k++) {

int median = a[j];

}

As we keep k > j > i, which means a[k] >= a[j] >= a[i] holds if a[] is sorted

Median of a[i], a[j], a[k] is always a[j]

SOLUTION 1 ðIMPLEMENTATION ðSTEP 2.1

ÅBAD practice to find the median ðusing if

for (int i = 1; i <= n; i ++)
for (int j = i + 1 ; j <= n; j++)

for (int k = j + 1 ; j <= n; k++) {
if (a[i] <= a[j] && a[j] <= a[k]) median = a[j];
else if (a[k] <= a[j] && a[j] <= a[i]) median = a[j];
else if (a[j] <= a[i] && a[i] <= a[k]) median = a[i];
else if (a[k] <= a[i] && a[i] <= a[j]) median = a[i];
else median = a[k];

}

ÅLess experienced student may miss some cases

SOLUTION 1 ðIMPLEMENTATION ðSTEP 2.2

ÅCalculate the sum after transforming

ÅAn easier approach: calculate the change of sum after transforming only

sort(a + 1, a + 1 + n);
for (int i = 1; i <= n; i ++)

for (int j = i + 1; j <= n; j++)
for (int k = j + 1; j <= n; k++) {

int median = a[j];
int original_sum = a[i] + a[j] + a[k];
int new_sum= median * 3;
int change = new_sumƵoriginal_sum ;

}

SOLUTION 1 ðIMPLEMENTATION ðSTEP 2.3

ÅRecord the optimal sum or optimal change of sum

sort(a + 1, a + 1 + n);

for (int i = 1; i <= n; i ++)

for (int j = i + 1; j <= n; j++)

for (int k = j + 1; j <= n; k++) {

int change = (a[i] + a[j] + a[k]) Ƶ3 * a[j];

if (change > best_sum) best_sum = change;

}

SOLUTION 1 ðIMPLEMENTATION ðSTEP 2.4

ÅRecord the optimal sum or optimal change of sum also the set of numbers we choose

sort(a + 1, a + 1 + n);

for (int i = 1; i <= n; i ++)

for (int j = i + 1; j <= n; j++)

for (int k = j + 1; j <= n; k++) {

int change = (a[i] + a[j] + a[k]) Ƶa[j] * 3;

if (change > best_sum) {

best_sum = change;

ans1 = a[i], ans2 = a[j], ans3 = a[k];

}

}

