J191 Alice and Wings

Author: Alex Tung

Speaker: Vincent Chiu

```
remainder of x divided by M = x \mod M

(C/C++:=x \% M)
```

```
x \bmod M = y \bmod M\Rightarrow x \equiv y \pmod M
```

For simplicity,

all modular equations in this PowerPoint are in $mod\ M$

$$x \equiv y$$

$$\Rightarrow \text{There exists some integer } k \text{ such that }$$

$$x = y + kM$$

Equivalently,

$$\Rightarrow x - y = kM$$
$$\Rightarrow x - y \equiv 0$$

$$x \equiv y$$
$$\Rightarrow x \pm z \equiv y \pm z$$

$$a \equiv c$$

$$b \equiv d$$

$$\Rightarrow a \pm b \equiv c \pm d$$

$$x \equiv y$$

$$0 \le x, y < M$$

$$\Rightarrow x = y$$

Simple proof:

$$0 \le x, y < M$$

$$-M = 0 - M < x - y < M - 0 = M$$

$$x - y = kM \Rightarrow -1 < k < 1, k = 0$$

$$x - y = 0, x = y$$

Problem Statement

- On day i, send i boxes of A Wings + 1 box of B wings
 - (A i + B) Wings in total
 - A = daily increase
 - B = fixed amount
- Alice groups them into packs of M wings, and brings the remaining fewer-than-M Wings home.
 - $W_i = (A i + B) \mod M$ Wings were brought back home

Problem Statement

- Given W_1, W_2, W_3 , determine A, B, M
- $0 \le W_1, W_2, W_3, A, B < M$
- Multiple solutions => minimize M: 100% marks, otherwise 50% marks

Example 1 – Sample 3

- A = 2, B = 3, M = 6
- $W_1 = (2 \times 1 + 3) \mod 6 = 5$
- $W_2 = (2 \times 2 + 3) \mod 6 = 1$
- $W_3 = (2 \times 3 + 3) \mod 6 = 3$

SUBTASKS

For all cases: $0 \leq W_1, W_2, W_3 \leq 3 \times 10^8$

Points Constraints

$$1 4 W_1 = W_2$$

2 12
$$0 \le W_1 \le W_2 \le W_3 \text{ or } W_1 \ge W_2 \ge W_3 \ge 0$$

3 20
$$0 \le W_1, W_2, W_3 \le 100$$

4 28
$$0 \le W_1, W_2, W_3 \le 3000$$

SAMPLE TESTS

Input Output

2 4 6 2 0 7

This sample scores 100% of the points

2 4 6 2 0 2018

This sample only scores 50% of the points

3 5 1 3 2 3 6

This corresponds to the example in the problem statement.

4 2 6 9 No solution

5 3 5 0 2 1 7

6 0 13 13 12 19

7 27 57 87 30 85 88

Attempts	Max	Mean	Std Dev			Sub	tasks	
75	100	11.493	23.598	4: 36	12: 14 6: 2	20: 12	28: 5 14: 1	36: 4

Attempts	Max	Mean	Std Dev			Sub	tasks	
75	100	11.493	23.598	4: 36	12: 14 6: 2	20: 12	28: 5 14: 1	36: 4

• Out of 75 contestants who have attempted this task,

38 people got 0 marks 38 > 37.5

Out of 17 Silver award recipients,

8 people got 0 marks + 1 person did not attempt 9 > 8.5

$$W_1 \equiv A + B$$

$$W_2 \equiv 2A + B$$

$$W_2 - W_1 \equiv (2A + B) - (A + B)$$
$$0 \equiv A$$

Together with

$$0 \le A < M$$

we have

$$A = 0$$

$$W_i \equiv Ai + B \equiv 0(i) + B \equiv B$$

Together with

$$0 \leq W_i, B < M$$

we have

$$B = W_1 = W_2$$
 (guaranteed)
 $B = W_3$ as well (to be checked)

- During competition, you may not do all those calculations.
- Intuitively, since $W_1 = W_2$,

Daily increase A=0

Fixed amount $B = W_1 (= W_2)$

• Also intuitively, W_3 should be equal to W_1 and W_2 in the previous two days.

- So the solution is simple:
- CHECK if $W_3 = W_2$
 - No \Rightarrow *No solution*
 - Yes $\Rightarrow A = 0, B = W_1$
- One last question: What is the minimal *M*?

- Recall that $0 \le W_i$, B < M
- Simply set $M = W_1 + 1$

Solution 1 – Subtask 1 only

PSUEDOCODE

INPUT W1, W2, W3
IF(W1==W2 && W2==W3)
A = 0, B = W1,
M = W1 + 1
PRINT A, B, M
ELSE PRINT "No
solution"

Subtask	Score	Max Score
1	4	4
2	0	12
3	0	20
4	0	28
5	0	36
Total	4	100

Define

$$d_1 = W_2 - W_1 d_2 = W_3 - W_2$$

, d for difference

$$d_i \equiv W_{i+1} - W_i \equiv (A(i+1) + B) - (Ai + B) \equiv A$$
 KEY: $d_1 \equiv d_2 \equiv A$

$$0 \le W_i < M$$

$$\Rightarrow -M < d_1, d_2 < M$$

Since

$$W_1 \le W_2 \le W_3 \text{ or } W_1 \ge W_2 \ge W_3$$

, d_1 and d_2 are either both positive or both negative.

Together with

$$-M < d_1, d_2 < M$$

We have

$$-M < d_1, d_2 \le 0 \text{ or } 0 \le d_1, d_2 < M$$

 $d_1 = d_2$

Remember that

$$d_i \equiv A$$

as well as

$$-M < d_i < M, 0 \le A < M$$

so A and B can be determined by

$$A = (d_1 + M) \% M$$

 $B = (W_1 - A + M) \% M$

- So the solution is simple:
- CHECK if $d_1 = d_2$
 - No \Rightarrow No solution
 - Yes $\Rightarrow A = (d_1 + M) \% M, B = (W_1 A + M) \% M$
- One last question: What is the minimal *M*?

- Recall that $0 \le W_i$, B < M
- Simply set $M = \max(W_i) + 1$

Solution 2 – Subtasks 1 and 2 only

PSUEDOCODE

```
INPUT W1, W2, W3
d1 = W2 - W1
d2 = W3 - W2
IF(d1 == d2)
M = max(Wi) + 1
A = (d1 + M) % M
B = (W1 - A + M) % M
 PRINT A, B, M
ELSE PRINT "No solution"
```

Subtask	Score	Max Score
1	4	4
2	12	12
3	0	20
4	0	28
5	0	36
Total	16	100

	$W_1 \leq W_2$	$W_1 \geq W_2$
$W_{\alpha} < W_{\alpha}$	Done	Pending

 $W_2 \ge W_3$ Subtask 2

Pending Done Subtask 2

Following this direction, we can eventually figure out the full solution

Following this direction, we can eventually figure out the full solution

We still have subtasks 3 and 4 to go ©

Following this direction, we can eventually figure out the full solution

We still have subtasks 3 and 4 to go ©

Following this direction, we can eventually figure out the full solution

Why not EXHAUSTION

Subtask 3: $0 \le W_1, W_2, W_3 \le 100$

- Exhaust M, A, and B
- 3 for-loops
- Check if $W_i = (Ai + B) \% M$

~ THE END ~

Subtask 4: $0 \le W_1, W_2, W_3 \le 3000$

- No need to exhaust B
- B can be determined by

$$B = (W_1 - A + M) \% M$$

2 for-loops only

~ THE END ~

Solution 3 – Subtask 3 only

PSUEDOCODE

```
INPUT W1, W2, W3
FOR M: 1 - 100
 FOR A: 0 - M-1
  FOR B: 0 - M-1
IF(W1==(A+B)%M &&
W2==(2A+B)%M &&
W3 = (3A + B) %M
    PRINT A, B, M
    END
PRINT "No solution"
```

Solution 4 – Subtasks 3 and 4 only

PSUEDOCODE

```
INPUT W1, W2, W3
FOR M: 1 - 3000
FOR A: 0 - M-1
B = (W1 - A + M) % M
IF(W2==(2A+B)%M &&
W3==(3A+B)%M)
PRINT A, B, M
END
PRINT "No solution"
```

Solution 3 – Subtask 3 only

Subtask	Score	Max Score
1	0	4
2	0	12
3	0	20
4	0	28
5	0	36
Total	0	100

Solution 4 – Subtasks 3 and 4 only

Subtask	Score	Max Score
1	0	4
2	0	12
3	0	20
4	0	28
5	0	36
Total	0	100

Example 2

- $W_1 = 1$, $W_2 = 0$, $W_3 = 1$
- Looks easy: odd, even, odd
- A = 1, B = 0, M = 2

Example 2*

Multiple Example 2 by 3000

•
$$W_1 = 3000, W_2 = 0, W_3 = 3000$$

•
$$\Rightarrow$$
 $A = 3000, B = 0, M = 6000$

IMPORTANT NOTE:

$$0 \le W_i \le n$$
DOES **NOT** IMPLY
 $0 \le M \le n$

Subtask 3: n = 100, Subtask 4: n = 3000

IMPORTANT NOTE:

$$0 \le W_i \le n$$
DOES IMPLY
 $0 \le M \le 2n$

(will be explained)

Solution 3* – Subtask 3 only

PSUEDOCODE

```
INPUT W1, W2, W3
FOR M: 1 - 200
 FOR A: 0 - M-1
  FOR B: 0 - M-1
IF(W1==(A+B)%M &&
W2==(2A+B)%M &&
W3 = (3A + B) %M
    PRINT A, B, M
    END
PRINT "No solution"
```

Solution 4* – Subtasks 3 and 4 only

PSUEDOCODE

```
INPUT W1, W2, W3
FOR M: 1 - 6000
 FOR A: 0 - M-1
  B = (W1 - A + M) % M
IF(W2==(2A+B)%M &&W3==(3A+B)%M)
   PRINT A, B, M
   END
PRINT "No solution"
```

Solution 3* – Subtask 3 only

Subtask	Score	Max Score
1	0	4
2	0	12
3	20	20
4	0	28
5	0	36
Total	20	100

Solution 4* – Subtasks 3 and 4 only

Subtask	Score	Max Score
1	0	4
2	0	12
3	20	20
4	28	28
5	0	36
Total	48	100

	$W_1 \leq W_2$	$W_1 \geq W_2$
$W_{\alpha} < W_{\alpha}$	Done	Pending

 $W_2 \ge W_3$ Subtask 2

Pending Done Subtask 2

Recall: (From Subtask 2)

Define

$$d_1 = W_2 - W_1 d_2 = W_3 - W_2$$

$$KEY: d_1 \equiv d_2 \equiv A$$

$$0 \le W_i < M$$

$$\Rightarrow -M < d_1, d_2 < M$$

$$d_{1} \equiv d_{2} \equiv A$$

$$\Rightarrow d_{1} - d_{2} = kM$$

$$0 \leq W_{i} < M$$

$$\Rightarrow -M < d_{1}, d_{2} < M$$

$$\Rightarrow -2M < d_{1} - d_{2} < 2M$$

$$-2M < kM < 2M$$

$$-2 < k < 2$$

$$k = 0 \text{ or } k = \pm 1$$

 $d_1 - d_2 = 0$ (solved in subtask 2) $or |d_1 - d_2| = M$

$$d_1 - d_2 = 0$$
 (solved in subtask 2) $or |d_1 - d_2| = M$

- In subtask 2, there are infinitely many solutions for M, and we choose the minimum M by $\max(W_i) + 1$
- KEY: For the latter case, M is UNIQUELY defined as $|d_1 d_2|$.

Sidetrack: explanation for subtasks 3 and 4

$$0 \le W_i \le n$$

$$\Rightarrow -n \le d_1, d_2 \le n$$

$$\Rightarrow -2n \le d_1 - d_2 \le 2n$$

$$\Rightarrow 0 \le M = |d_1 - d_2| \le 2n \text{ (if } d_1 \ne d_2)$$

- So the solution is simple:
- If $d_1 = d_2$, $M = \max(W_i) + 1$
- Else $M = |d_1 d_2|$, and **CHECK** that $W_i < M$
 - No \Rightarrow No solution
 - The case where d_1 and d_2 have the same sign and $d_1 \neq d_2$ are also treated as "No"
- The rest is the same as subtask 2:
- $A = (d_1 + M) \% M$
- $B = (W_1 A + M) \% M$