Greedy Algorithms

Charlie Li
Coin Problem

• Suppose you are given infinitely many coins of the following values:
 • $10, $5, $2, $1, $0.5, $0.2, $0.1

• What is the minimum number of coins needed to get M where
 • (i) $M = 1.9$
 • (ii) $M = 7.8$
 • (iii) $M = 16.1$
Coin Problem

• Answers:
 • (i) 4
 • (ii) 5
 • (iii) 4

• Why can we get the answer so quickly?
Coin Problem

• Cashier’s algorithm
 • While there are outstanding amount, we take one of the coin with largest value but not exceeding the outstanding amount

• () means the outstanding amount
• ($1.9) = $1 + ($0.9) = $1 + $0.5 + ($0.4) = $1 + $0.5 + $0.2 + $0.2
• ($7.8) = $5 + ($2.8) = $5 + $2 + ($0.8) = $5 + $2 + $0.5 + ($0.3) = $5 + $2 + $0.5 + $0.2 + $0.1
• ($16.1) = $10 + ($6.1) = $10 + $5 + ($1.1) = $10 + $5 + $1 + $0.1
Coin Problem

• Does Cashier’s algorithm always give us the optimal solution for HK’s coins?
 • \{10, 5, 2, 1, 0.5, 0.2, 0.1\}

• Is there any counter example? If no, why is it optimal?

• If you cannot come up with the answer, never mind, let’s look at another example
Coin Problem

• Consider the system of stamps
• $5, $3.7, $3.1, $2.9, $2.3, $2.2, $2, $1.7, $1, $0.5, $0.2, $0.1

• What is the minimum number of stamps needed to get M where
 • (i) $M = 1.9$
 • (ii) $M = 7.8$
 • (iii) $M = 16.1$
Coin Problem

- Using the same algorithm,
 - (i) $1.9 = $1.7 + $0.2
 - (ii) $7.8 = $5 + $2.3 + $0.5
 - (iii) $16.1 = $5 + $5 + $5 + $1 + $0.1

- The algorithm gives optimal solution for (i) and (ii) but not (iii)
 - $16.1 = $5 + $3.7 + $3.7 + $3.7
- We can use 4 stamps only but greedy told us 5
Coin Problem

• Go back to the original problem

• Why the Cashier’s algorithm gives us the optimal solution for the coins with value \{10, 5, 2, 1, 0.5, 0.2, 0.1\}

• Let’s see if there are any properties for the optimal solution
Coin Problem

• Property 1
 • The optimal solution contains at most one $0.1 coin.
 • If there are more than one $0.1 coin, we can change two $0.1 into one $0.2
 • Similarly, the optimal solution contains at most one $5, $1, $0.5

• Property 2
 • The optimal solution contains at most two $0.2 coins.
 • If there are more than two $0.2 coins, we can change three $0.2 into $0.5 and $0.1
 • Similarly, the optimal solution contains at most two $2

• Property 3
 • The optimal solution contains no $0.1 coins if it contains two $0.2 coins
 • If there are one $0.1 and two $0.2, we can change them to $0.5
 • Similarly, optimal solution contains no $1 coins if it contains two $2 coins
Coin Problem

<table>
<thead>
<tr>
<th>Value of coin</th>
<th>Constraint</th>
<th>Max. value if we only use coins with less value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.1</td>
<td>At most 1</td>
<td>$0</td>
</tr>
<tr>
<td>$0.2</td>
<td>At most 2</td>
<td>$0.1</td>
</tr>
<tr>
<td></td>
<td>no $0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>when 2</td>
<td></td>
</tr>
<tr>
<td>$0.5</td>
<td>At most 1</td>
<td>$0.4</td>
</tr>
<tr>
<td>$1</td>
<td>At most 1</td>
<td>$0.9</td>
</tr>
<tr>
<td>$2</td>
<td>At most 2</td>
<td>$1.9</td>
</tr>
<tr>
<td></td>
<td>no $1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>when 2</td>
<td></td>
</tr>
<tr>
<td>$5</td>
<td>At most 1</td>
<td>$4.9</td>
</tr>
<tr>
<td>$10</td>
<td>No limit</td>
<td>$9.9</td>
</tr>
</tbody>
</table>
Coin Problem

• From the table, we cannot get $10 just using coins less than $10, so we must use $10 coin

• This is also true for $5, $2, $1, $0.5, $0.2 and $0.1

• So Cashier’s Algorithm can give optimal solution for HK’s coin system
Greedy Algorithm

• A greedy algorithm attempt to solve the problem by choosing locally optimal step and reduce the original problem into another sub-problem then solve the sub-problem using the same strategy
• It is not a specific algorithm, it is just an idea
• It is important to know that for a greedy algorithm, the previous choices should not affect the decision
• Unlike brute force and DP (will be taught in April), a greedy algorithm may not always give an optimal solution, eg. The stamp system
Coin Problem – How Greedy?

• Answer to main problem =
 • Optimal step’s effect to answer + Answer to sub-problem

• Problem: Remaining amount K
 • We will greedily take a coin with largest value but not exceeding K
 • We will take a coin d where \(d = \max\{D_i | D_i \leq K\} \)
 • The sub-problem is remaining amount K – d
 • Answer for remaining amount K: Ans(K) = 1 + Ans(K - d)
 • Answer to main problem: Ans(N)
 • Base case: Ans(0) = 0
J042 Currency Exchange

• You know the exact exchange rate from USD to EUR for the following N days, you have US$ $M at day 1, how much USD will you have if you trade optimally?
J042 Currency Exchange

- When thinking greedily, we should be holding EUR when the rate decrease and holding USD when the rate increases

![Graph showing currency exchange rates for 10 days, with EUR and USD highlighted at different points.]
J042 Currency Exchange

• Try this input:
 10 100
 1.5 1.4 1.1 0.6 0.8 1.2 1.3 0.9 0.7 0.5

• Between day 1 and day 2, we will change to EUR at day 1 and change back at day 2 since the rate decreases
• Between day 2 and day 3, we will change to EUR at day 2 and change back at day 3 since the rate decreases
• ...
• Between day 4 and day 5, we will do nothing since the rate increases ...
J042 Currency Exchange

• The code looks like this:

```c
#include<cstdio>

int n;
double m, c[10004];

int main() {
    scanf("%d %lf", &n, &m);
    for (int i = 0; i < n; i++) scanf("%lf", &c[i]);
    for (int i = 1; i < n; i++)
        if (c[i - 1] > c[i])
            m = m/c[i]*c[i - 1];
    printf("%.2lf\n", m);
}
```
J042 Currency Exchange

• Why is this optimal?
• What if we hold EUR when the rate increase?
• What if we hold USD when the rate decrease?
• How are these compare to our greedy solution?
Fractional Knapsack

• Suppose you have a cup with volume V ml.
• There are N flavors of drinks, for each flavor, there are only a_i ml available and contain a total of s_i g sugar
• At most how many grams of sugar can you consume if you fill up the cup optimally?
Fractional Knapsack

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Volume available (ml)</th>
<th>Total sugar (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>320</td>
<td>35</td>
</tr>
<tr>
<td>B</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>240</td>
<td>40</td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>30</td>
</tr>
</tbody>
</table>
Fractional Knapsack

• We can just sort the flavors according to sugar per unit volume, and then fill up our cup according to the order

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Volume available (ml)</th>
<th>Total sugar (g)</th>
<th>Sugar per volume</th>
<th>Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>240</td>
<td>40</td>
<td>0.167</td>
<td>240</td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>30</td>
<td>0.15</td>
<td>200</td>
</tr>
<tr>
<td>A</td>
<td>320</td>
<td>35</td>
<td>0.109</td>
<td>160</td>
</tr>
<tr>
<td>B</td>
<td>220</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fractional Knapsack

• Why is this optimal?
• Try to answer seeing what will happen if we change some of C into D, A or B

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Volume available (ml)</th>
<th>Total sugar (g)</th>
<th>Sugar per volume</th>
<th>Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>240</td>
<td>40</td>
<td>0.167</td>
<td>240</td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>30</td>
<td>0.15</td>
<td>200</td>
</tr>
<tr>
<td>A</td>
<td>320</td>
<td>35</td>
<td>0.109</td>
<td>160</td>
</tr>
<tr>
<td>B</td>
<td>220</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
0-1 Knapsack

• What will happen if the question is changed to “If you used some flavor X, you must use up all flavor X”

• Can we still use greedy? Can you think of counter example?

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Volume available (ml)</th>
<th>Total sugar (g)</th>
<th>Sugar per volume</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>240</td>
<td>40</td>
<td>0.167</td>
<td>0 or 240</td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>30</td>
<td>0.15</td>
<td>0 or 200</td>
</tr>
<tr>
<td>A</td>
<td>320</td>
<td>35</td>
<td>0.109</td>
<td>0 or 320</td>
</tr>
<tr>
<td>B</td>
<td>220</td>
<td>0</td>
<td>0</td>
<td>0 or 220</td>
</tr>
</tbody>
</table>
S011 Activities

• You have N activities to join.
• The i^{th} activity start at S_i and end at E_i
• For any two activities, you can join both of them iff they do not overlap
• Find the max. no. activities you can join
S011 Activities

• 4 ways to greedy:
 • (1) Attend the activity with smallest starting time
 • (2) Attend the activity with smallest ending time
 • (3) Attend the activity with smallest conflicts
 • (4) Attend the activity with shortest interval

• Three of them are wrong, do you know which three?
• What are the counter examples?
S011 Activities

• The correct answer is (2) attend the activity with smallest ending time
• We first sort the activities with ascending end time.
• Then we will attend the first one. (local optimal step)
• So we cannot join any other activities before the one end, we just eliminate those we cannot join. (Reduce to sub-problem)
• Repeat until there are no activities left. (base case)
S011 Activities

• The code looks like this:

```cpp
bool cmp(activity x, activity y) {
    return x.e < y.e;
}

bool cmp2(activity x, activity y) {
    return x.i < y.i;
}

int main() {
    cin >> n;
    for (int i = 1; i <= n; i++) {
        cin >> a[i].s >> a[i].e;
        a[i].i = i;
    }
    sort(a + 1, a + n + 1, cmp);
    for (int i = 1, j = 0; i <= n; i++) {
        if (a[i].s < j) continue;
        j = a[i].e;
        a[i].u = true;
    }
    sort(a + 1, a + n + 1, cmp2);
    cout << c << endl;
    for (int i = 1; i <= n; i++) if (a[i].u) cout << i << endl;
}
S011 Activities

• Why is this optimal?

• Consider only 2 activities, if we cannot join both, which should we join?
• We should join the one which ends earlier, because this can help us reserve more time to join other activities
• By applying the same argument to all pairs of activities, we know that always attending the one with smallest ending time is the best.
M1713 Biscuit Clicker

• When the production rate is $P$, Alice will get a biscuit every $1/P$ seconds
• The basic production rate is 1
• There are $N$ upgrades where every upgrade can be bought at most once
• For the $i^{\text{th}}$ upgrade, the cost is $C_i$ and it multiply the production rate by $P_i$
• Find a fastest way to collect $K$ biscuits in the bank
M1713 Biscuit Clicker

• If we consider only two upgrades
• We will buy upgrade i before j if

\[ C_i + \frac{C_j}{P_i} \leq C_j + \frac{C_i}{P_j} \]

• If we consider only one upgrade
• We will buy upgrade i if

\[ C_i + \frac{K}{P_i} \leq K \]

• Actually, if we sort according to the first inequality and pick upgrades according to the second inequality, this will gives us the full solution
M1713 Biscuit Clicker

• The code looks like this:

```cpp
bool cmp(int x, int y) {
}

int main() {
 cin >> n >> k;
 for (int i = 0; i < n; i++) f[i] = i;
 for (int i = 0; i < n; i++) cin >> c[i] >> p[i];
 for (int i = 0; i < n; i++)
 if (c[i] + 1. * k / p[i] < k) {
 u[i] = true;
 tt++;
 }
 sort(f, f + n, cmp);
 cout << tt << endl;
 for (int i = 0; i < n; i++)
 if (u[f[i]])
 cout << f[i] + 1 << " ";
 cout << endl;
```
M1713 Biscuit Clicker

• The most important part is to see the transverse property of the first inequality

\[ C_i + \frac{C_j}{P_i} \leq C_j + \frac{C_i}{P_j} \]

• If we buy upgrade i before upgrade j, and if we buy upgrade j before upgrade k, then we should buy upgrade i before upgrade k

• If this property holds, then we may try to use greedy to solve the problem
  • First, this tell us that we can sort the upgrades
  • Second, we can easily show if there are any inversions, it will not be the optimal solution
Conclusion

• When can we use greedy?
  • First, when you think you can (TRUE!!!)
  • Second, you cannot find counter example (You should try to do so)
  • The system gives you full feedback (it worth trying)
    • As you can see, greedy algorithm is not long, so it worth trying if you can code fastly
  • points are given per subtask and you have no idea (it worth trying)
    • Greedy solution sometimes give extremely good approximation for the optimal solution

• It is not realistic to prove the correctness during the competition
  • Just prove in mind for a little bit is enough
Suggested Tasks

• 01014 Stamps
• D109 Giving changes
• M0632 Machine Scheduling
• M0633 Children’s Game
• J044 Amazing Robot
• J064 Cave Adventures
• J154 Father’s Will
Extra: M0633 Children’s Game

• Idea similar to M1713 Biscuit Clicker, think of what will happen if N = 2

• The code looks like this:

```cpp
#include<iostream>
#include<string>
#include<algorithm>

using namespace std;

int n;
string a[55];

bool cmp(string x, string y) {
 return ;
}

int main() {
 cin >> n;
 for (int i = 0; i < n; i++) cin >> a[i];
 sort(a, a + n, cmp);
 for (int i = 0; i < n; i++) cout << a[i];
 cout << endl;
}
```