
Exhaustion, branch & bound
Jason



Exhaustion

• Enumerate all possible solutions

• Check whether each of them satisfies the problem’s statement

• Find the best one among them



When to use

• When the problem is proved to be difficult to solve

• When the number of possible solutions is small enough

• When the constraints are small (e.g. 1 <= N <= 10)

• When you don’t know how to solve the problem quickly



Example 1

• Given a list of integers and an integer M

• Choose a pair of integers such that the sum of them is equal to M

• E.g. A = {1,2,4,8,16}, M = 10 -> Choose 2 and 8



Example 1

• The number of possible solutions is small
• Number of pairs = N(N-1)/2, where N is number of integers

• We can try to form all pairs and check whether they satisfy the 
requirement

For i = 1 to N-1

For j = i+1 to N

if A[i] + A[j] = M then

return {A[i], A[j]}



Example 2

• Given a list of positive integers and an integer M

• Find a subset such that the sum of the integers is equal to M

• E.g. A = {2,9,15,16}, M = 27 -> Output {2, 9, 16}



Example 2

• Number of possible solutions = 2N

• {}

• {2}, {9}, {15}, {16}

• {2, 9}, {2, 15}, {2, 16}, {9, 15}, {9, 16}, {15, 16}

• {2, 9, 15}, {2, 9, 16}, {2, 15, 16}, {9, 15, 16}

• {2, 9, 15, 16}

• When N is small, we can just check all of them



Example 2

• Method in example 1 can not solve the problem

• 1 for loop to choose 1 integer, 2 for loops to choose 2 integers, 3 for 
loops to choose 3 integers, …

• Use recursion



Example 2

{}

{2} {}

{2,9} {2} {9} {}

{2,9,15} {2,9} {2,15} {2} {9,15} {9} {15} {}

Choose 2 Not Choose 2

Choose 9 Not Choose 9 Choose 9 Not Choose 9

Choose 15 Not Choose 15 Choose 15 Not Choose 15 Choose 15 Not Choose 15 Choose 15 Not Choose 15

…



Example 2 – Pseudocode

Procedure exhaustion(int x, int sum)
If x <= N then

choose[x] = true

exhaustion(x + 1, sum + A[x])

choose[x] = false

exhaustion(x + 1, sum)

Else

if sum = M then

output the numbers that are chosen



Example 2

• Time complexity: O(2N)

• There exists other more efficient solutions

• Exhaustion is enough to solve the problem if N is small (e.g. N <= 20)



Example

• HKOJ S153 Secret Message



Example 3

• Given the coordinates of N points

• Find out the shortest possible route that visits each point exactly once 
and returns to the origin point

• Example:



Example 3

• The famous “Travelling salesman problem”

• Proven to be an NP-hard problem

• Cannot be solved in polynomial time (for now)

• The number of possible routes is N!

• Enumerate all of them to find the shortest one



Example 3 – Pseudocode 1

Procedure exhaustion(int x)
If x <= N then

for i from 1 to N

if the i-th point is not chosen

mark the i-th point as the x-th point of the route

exhaustion(x + 1)

Else

Calculate the route

Check if it is the shortest one

Time complexity: O(N*N!)



Example 3 – Pseudocode 2

P[i] denotes the i-th point

Procedure exhaustion(int x, double total)
If x <= N then

for i from x to N
swap P[x] and P[i]
exhaustion(x + 1, total + distance between P[x] and P[x-1])

Else
total = total + distance between P[N] and P[1]
Check if it is the shortest one

Time complexity: O(N!)



Example 4 – Distinct Permutations

• HKOJ 01031

• Similar to the previous problem

• Given a string of alphabets

• Generate DISTINCT permutations



Example 4 – Distinct Permutations

• Methods from example 3 may fail

• If the input is ACBA, 2 AABC may be generated

• Because 2 ‘A’s are treated as different elements



Example 4 – Distinct Permutations

• Solution 1:

• After generate the permutations

• Delete the repeated ones by sorting (or map in c++)

• Okay for this problem, but more time and memory is wasted



Example 4 – Distinct Permutations

• Solution 2:

• Count the frequency of each alphabet

• During the recursion, choose an alphabet that still has quotas



Example 4 – Distinct Permutations

“”
{A:2,B:1,C:1}

“A”
{A:1,B:1,C:1}

Choose A

“B”
{A:2,B:0,C:1}

Choose B

“C”
{A:2,B:1,C:0}

Choose C

“AA”
{A:0,B:1,C:1}

Choose A

“AB”
{A:1,B:0,C:1}

Choose B

“AC”
{A:1,B:1,C:0}

Choose C

“AAB”
{A:0,B:0,C:1}

Choose B

“AAC”
{A:0,B:1,C:0}

Choose C



Example 4 – Pseudocode

Let s[1..K] be the output string

Procedure exhaustion(int x)
If x <= K then

for i from ‘A’ to ‘Z’
if frequency[i] > 0 then

frequency[i] = frequency[i] – 1
s[x] = i
exhaustion(x + 1)
frequency[i] = frequency[i] + 1

Else
print s



Example

• HKOJ T112 Tetrisudoku



Practice problem

• HKOJ 01014 Stamps

• HKOJ 01031 Permutations

• HKOJ 01035 Combinations

• HKOJ 20296 Safecracker

• UVA 725 Division



Exhaustion

• Sometimes the way we do exhaustion may affect the efficiency

• A part of the answer may determine the rest

• Smaller part is unknown -> less states to be searched



Example 5 – Toggle

• A board with N×N cells

• Each cell is colored either black or white initially

• In each move, you can either 'toggle' a row or a column so that the 
color of the cells on the entire row/column changes. If the color of a 
cell is black, it becomes white after it is toggled, and vice versa.

• Finds a sequence of moves that maximizes the number of white cells.



Example 5 – Toggle

• The order of row/column to be toggled does not matter

• Each row/column will be toggled at most once

• Try toggling all combinations of rows and columns

• See which one gives the most number of white cells



Example 5 – Toggle

• Number of combinations = 22N = 4N

• Time complexity : O(N2*4N)

• Works when N <= 4

• Too slow when N = 16



Example 5 – Toggle

• If the combination of rows to be toggled is fixed, we don’t need to try 
toggling all combinations of columns

• If a column has more white cells than black cells, we should not 
toggle it

• If a column has more black cells than white cells, we must toggle it



Example 5 – Toggle

• Try toggling all combinations of rows

• For each column, toggle it only if it has more black cells than white 
cells

• Check whether it has the most number of white cells

• Number of combinations = 2N

• Time complexity : O(N2*2N)



Example 6 – Magic Triangle

• There is a triangle with N levels (N <= 5)

• The ith level has i nodes

• Each node except those in the Nth level has two children



Example 6 – Magic Triangle

• Assign 1 to N*(N+1)/2 into the nodes

• The value of some nodes are predetermined

• Output an arrangement such that the value of each node = The 
absolute difference of the value of its 2 children



Example 6 – Magic Triangle

• Solution 1 : 

• Try all permutations of numbers

• Check whether they fulfill the condition

• Number of permutations = (N*(N+1)/2)!

• Time complexity : O((N*(N+1)/2)!)



Example 6 – Magic Triangle

• When N = 5, number of permutations = 1307674368000

• Constant optimization is not enough

• Even by immediately discarding the permutations that does not 
match with the predetermined numbers, there are still too many

• A faster solution is needed



Example 6 – Magic Triangle

• Consider the values in the Nth level

• If these values are fixed, the values in the (N-1)th level can be 
calculated

• Use values in the (N-1)th level to calculate those in the (N-2)th level

• …

• …

• Use values in the 2nd level to calculate the value in the 1st level

• The whole arrangement is fixed!



Example 6 – Magic Triangle

6 2 5



Example 6 – Magic Triangle

4 3

6 2 5



Example 6 – Magic Triangle

1

4 3

6 2 5



Example 6 – Magic Triangle

• Solution 2 

• Exhaust all permutations of the Nth level

• Calculate the values of the whole triangle from the bottom to top

• Verify if the numbers are distinct

• Number of permutations = (N*(N+1)/2)PN

• When N is 5, the number of permutations = 360360

• Fast enough to solve the problem



Example

• HKOJ T161 Apple Race



Branch & Bound

• During the searching, some invalid states may be visited

• When the intermediate state is known to be invalid, stop branching 
from it

• When the intermediate state gives an unsatisfied answer, stop 
branching from it



Example 2 – again

• Let’s go back to example 2

• Now A = {2, 9, 10, 3, 7, 2, 5, …} and M = 16

• Use the same technique again



Example 2 – again

• Some of the states are useless!

{}

{2} {}

{2,9} {2} {9} {}

{2,9,15} {2,9} {2,15} {2} {9,15} {9} {15} {}

Choose 2 Not Choose 2

Choose 9 Not Choose 9 Choose 9 Not Choose 9

Choose 15 Not Choose 15 Choose 15 Not Choose 15 Choose 15 Not Choose 15 Choose 15 Not Choose 15

…



Example 2 – again

{}

{2} {}

{2,9} {2} {9} {}

{2,9,15} {2,9} {2,15} {2} {9,15} {9} {15} {}

Choose 2 Not Choose 2

Choose 9 Not Choose 9 Choose 9 Not Choose 9

Choose 15 Not Choose 15 Choose 15 Not Choose 15 Choose 15 Not Choose 15 Choose 15 Not Choose 15

…



Example 2 – again

• Sum of the chosen numbers > 16

• No need to branch anymore {}

{2} {}

{2,9} {2} {9} {}

{2,9,15} {2,9} {2,15} {2} {9,15} {9} {15} {}

Choose 2 Not Choose 2

Choose 9 Not Choose 9 Choose 9 Not Choose 9

Choose 15 Not Choose 15 Choose 15 Not Choose 15 Choose 15 Not Choose 15 Choose 15 Not Choose 15

…



Example 2 – Pseudocode 2

Procedure exhaustion(int x, int sum)
If sum > M then return

If x <= N then

choose[x] = true

exhaustion(x + 1, sum + A[x])

choose[x] = false

exhaustion(x + 1, sum)

Else

if sum = M then

output the numbers that are chosen



Example 2 – Pseudocode 3

Procedure exhaustion(int x, int sum)
If sum > M then return

If solution is found then return

If x <= N then

choose[x] = true

exhaustion(x + 1, sum + A[x])

choose[x] = false

exhaustion(x + 1, sum)

Else

if sum = M then

output the numbers that are chosen



Example 2 – again

• Constant optimization

• The time complexity is not affected much – still O(2N)

• But much less operations are done

• Search meaningful states only



Example 

• HKOJ 20750 8 Queens Chess Problem



Example 6 – Bin Packing

• You have N objects to be packed in some identical bins.

• Each of the bins has the same capacity C and can hold objects of total 
volume not exceeding C. 

• Given the volume Vi of each object, at least how many bins are 
needed to pack all N objects?

• Example:

• N = 5, C = 50

• V = {10, 20, 30, 50, 20}

• The objects can be put into 3 bins : {10, 20}, {30, 20}, {50}



Example 6 – Bin Packing

• An obvious solution is to try all possibilities

• Put the first object into a new bin

• For the second object, try to put it into an existing and large enough 
bin, or try to put it into a new bin

• For the third object, try to put it into an existing and large enough bin, 
or try to put it into a new bin

• …

• Find the minimum number of bins among the possibilities



Example 6 – Bin Packing

• Not fast enough

• More optimization and pruning is needed



Example 6 – Bin Packing

• If the number of bins used in the current state is greater than or equal 
to the best answer by far, the state can be discarded

• The number of bins used will not decrease later

• It cannot help to reduce the answer



Example 6 – Bin Packing

{}

{10,30}, {20,30}, {50}

{10}, {20}, {50}, {30} {10}, {20, 30}, {50}



Example 6 – Bin Packing

{}

{10,30}, {20,30}, {50}

{10}, {20}, {50}, {30} {10}, {20, 30}, {50}



Example 6 – Bin Packing

• Still not fast enough

• If the object can completely fill a bin, then the object must be put in 
that bin

• Use up the whole bin -> no capacity is wasted

• As it is the optimal way, we do not need to consider other cases



Example 6 – Bin Packing

{}

{10}, {20}

{10}, {20, 30}{10, 30}, {20} {10}, {20}, {30}



Example 6 – Bin Packing

{}

{10}, {20}

{10}, {20, 30}{10, 30}, {20} {10}, {20}, {30}



Example 6 – Bin Packing

• Still not fast enough

• Sort the objects in descending order of volume

• A suboptimal solution is generated faster

• No need to consider much about the distribution of small objects

{50}, {30}, {30} {10} {20} {30} {10, 20}, {30} {10}, {20, 30}



Example 6 – Bin Packing

• Still not fast enough

• Sort the objects in descending order of volume

• A suboptimal solution is generated faster

• No need to consider much about the distribution of small objects

{50}, {30}, {30} {10} {20} {30} {10, 20}, {30} {10}, {20, 30}



Example 6 – Bin Packing

• Still not fast enough

• Maybe consider other implementations

• For each bin, try to choose some objects to put into it while keeping 
the volume not exceeding C

• Try to add one more bin if it is not enough

• Repeat until a valid arrangement is made



Example 6 – Bin Packing

• Many meaningless repetitions

• For example, {1, 2} {3, 4} and {3, 4} {1, 2} will be considered twice

• For a new bin, the first unselected object must be put into it

• Avoid permutation of bins



Example 6 – Bin Packing

• Still not fast enough?????

• Try to stop the program after a number of trials

• Do not guarantee a correct solution

• Usually give you a suboptimal answer



Example 6 – Bin Packing

• Using a mix of pruning and optimization, you may eventually solve the 
problem

• Be creative

• Consider different ways to cut the redundant states

• Luck may be important

• Random may be useful



Example

• HKOJ 01049 Chocolate



Practice problems

• HKOJ 01049 Chocolate

• HKOJ 01050 Bin Packing

• HKOJ 20750 8 Queens Chess Problem

• UVA 307 Sticks

• UVA 524 Prime Ring Problem



Summary

• Exhaustion is useful to solve subtasks with small constraints

• Easy to do even you have no idea about the full solution

• Give you some patterns about the answers



Summary

• Exhaustion is actually very common (only in subtasks)

• Appear in almost every HKOI-TFT

• Don’t hesitate to use it

• Don’t ignore it and spend all the time on other subtasks



Example

• HKOJ T171 Optimal Bowing


