Exhaustion, branch & bound

Jason
Exhaustion

• Enumerate all possible solutions
• Check whether each of them satisfies the problem’s statement
• Find the best one among them
When to use

- When the problem is proved to be difficult to solve
- When the number of possible solutions is small enough
- When the constraints are small (e.g. $1 \leq N \leq 10$)
- When you don’t know how to solve the problem quickly
Example 1

• Given a list of integers and an integer M
• Choose a pair of integers such that the sum of them is equal to M
• E.g. A = {1,2,4,8,16}, M = 10 -> Choose 2 and 8
Example 1

• The number of possible solutions is small
 • Number of pairs = N(N-1)/2, where N is number of integers
• We can try to form all pairs and check whether they satisfy the requirement

For i = 1 to N-1
 For j = i+1 to N
 return {A[i], A[j]}
Example 2

• Given a list of positive integers and an integer M
• Find a subset such that the sum of the integers is equal to M
• E.g. $A = \{2, 9, 15, 16\}$, $M = 27$ -> Output $\{2, 9, 16\}$
Example 2

• Number of possible solutions = 2^N
• {}
• {2}, {9}, {15}, {16}
• {2, 9}, {2, 15}, {2, 16}, {9, 15}, {9, 16}, {15, 16}
• {2, 9, 15}, {2, 9, 16}, {2, 15, 16}, {9, 15, 16}
• {2, 9, 15, 16}
• When N is small, we can just check all of them
Example 2

- Method in example 1 can not solve the problem
- 1 for loop to choose 1 integer, 2 for loops to choose 2 integers, 3 for loops to choose 3 integers, ...
- Use recursion
Example 2

Choose 2
Not Choose 2

Choose 9
Not Choose 9

Choose 15
Not Choose 15

Choose 2,9,15

Choose 2,9

Choose 2,15

Choose 2

Choose 9,15

Choose 9

Choose 15

Choose 15

Choose 15

Choose 15

Choose 15

Choose 15

Choose 15
Example 2 – Pseudocode

Procedure exhaustion(int x, int sum)
 If x <= N then
 choose[x] = true
 exhaustion(x + 1, sum + A[x])
 choose[x] = false
 exhaustion(x + 1, sum)
 Else
 if sum = M then
 output the numbers that are chosen
Example 2

- Time complexity: $O(2^N)$
- There exists other more efficient solutions
- Exhaustion is enough to solve the problem if N is small (e.g. $N \leq 20$)
Example

• HKOJ S153 Secret Message
Example 3

• Given the coordinates of N points
• Find out the shortest possible route that visits each point exactly once and returns to the origin point
• Example:
Example 3

• The famous “Travelling salesman problem”
• Proven to be an NP-hard problem
• Cannot be solved in polynomial time (for now)

• The number of possible routes is N!
• Enumerate all of them to find the shortest one
Example 3 – Pseudocode 1

Procedure exhaustion(int x)
 If x <= N then
 for i from 1 to N
 if the i-th point is not chosen
 mark the i-th point as the x-th point of the route
 exhaustion(x + 1)
 Else
 Calculate the route
 Check if it is the shortest one

Time complexity: $O(N^*N!)$
Example 3 – Pseudocode 2

P[i] denotes the i-th point

Procedure exhaustion(int x, double total)
 If x <= N then
 for i from x to N
 swap P[x] and P[i]
 exhaustion(x + 1, total + distance between P[x] and P[x-1])
 Else
 total = total + distance between P[N] and P[1]
 Check if it is the shortest one

Time complexity: O(N!)
Example 4 – Distinct Permutations

• HKOJ 01031
• Similar to the previous problem
• Given a string of alphabets
• Generate DISTINCT permutations
Example 4 – Distinct Permutations

• Methods from example 3 may fail
• If the input is ACBA, 2 AABC may be generated
• Because 2 ‘A’s are treated as different elements
Example 4 – Distinct Permutations

• Solution 1:
 • After generate the permutations
 • Delete the repeated ones by sorting (or map in c++)

• Okay for this problem, but more time and memory is wasted
Example 4 – Distinct Permutations

• Solution 2:
• Count the frequency of each alphabet
• During the recursion, choose an alphabet that still has quotas
Example 4 – Distinct Permutations

- Choose A
 - "A"
 - Choose B
 - "AB"
 - Choose B
 - "AAB"
 - Choose C
 - "AAC"
 - "AC"
 - Choose C
 - "AC"
- Choose B
 - "B"
 - Choose C
 - "C"
- Choose C
 - "C"

Examples:

- "A"
 - {A:1,B:1,C:1}
- "B"
 - {A:2,B:0,C:1}
- "C"
 - {A:2,B:1,C:0}
- "AA"
 - {A:0,B:1,C:1}
- "AB"
 - {A:1,B:0,C:1}
- "AC"
 - {A:1,B:1,C:0}
- "AAB"
 - {A:0,B:0,C:1}
- "AAC"
 - {A:0,B:1,C:0}
Example 4 – Pseudocode

Let s[1..K] be the output string

Procedure exhaustion(int x)
 If x <= K then
 for i from ‘A’ to ‘Z’
 if frequency[i] > 0 then
 frequency[i] = frequency[i] - 1
 s[x] = i
 exhaustion(x + 1)
 frequency[i] = frequency[i] + 1
 Else
 print s
Example

• HKOJ T112 Tetrisudoku
Practice problem

• HKOJ 01014 Stamps
• HKOJ 01031 Permutations
• HKOJ 01035 Combinations
• HKOJ 20296 Safecracker
• UVA 725 Division
Exhaustion

• Sometimes the way we do exhaustion may affect the efficiency
• A part of the answer may determine the rest
• Smaller part is unknown -> less states to be searched
Example 5 – Toggle

- A board with $N \times N$ cells
- Each cell is colored either black or white initially
- In each move, you can either 'toggle' a row or a column so that the color of the cells on the entire row/column changes. If the color of a cell is black, it becomes white after it is toggled, and vice versa.
- Finds a sequence of moves that maximizes the number of white cells.

![Figure 1](image1.png) ![Figure 2](image2.png) ![Figure 3](image3.png)
Example 5 – Toggle

• The order of row/column to be toggled does not matter
• Each row/column will be toggled at most once
• Try toggling all combinations of rows and columns
• See which one gives the most number of white cells
Example 5 – Toggle

• Number of combinations = $2^{2N} = 4^N$
• Time complexity : $O(N^{2*4^N})$

• Works when $N \leq 4$
• Too slow when $N = 16$
Example 5 – Toggle

• If the combination of rows to be toggled is fixed, we don’t need to try toggling all combinations of columns
• If a column has more white cells than black cells, we should not toggle it
• If a column has more black cells than white cells, we must toggle it
Example 5 – Toggle

• Try toggling all combinations of rows
• For each column, toggle it only if it has more black cells than white cells
• Check whether it has the most number of white cells

• Number of combinations = 2^N
• Time complexity : $O(N^2*2^N)$
Example 6 – Magic Triangle

• There is a triangle with N levels (N <= 5)
• The ith level has i nodes
• Each node except those in the Nth level has two children
Example 6 – Magic Triangle

• Assign 1 to \(N \times (N+1)/2\) into the nodes
• The value of some nodes are predetermined
• Output an arrangement such that the value of each node = The absolute difference of the value of its 2 children
Example 6 – Magic Triangle

• Solution 1:
 • Try all permutations of numbers
 • Check whether they fulfill the condition
 • Number of permutations = \((N^*(N+1)/2)!\)
 • Time complexity : \(O((N^*(N+1)/2)!)\)
Example 6 – Magic Triangle

• When N = 5, number of permutations = 1307674368000
• Constant optimization is not enough
• Even by immediately discarding the permutations that does not match with the predetermined numbers, there are still too many
• A faster solution is needed
Example 6 – Magic Triangle

- Consider the values in the Nth level
- If these values are fixed, the values in the (N-1)th level can be calculated
- Use values in the (N-1)th level to calculate those in the (N-2)th level
- ...
- ...
- Use values in the 2nd level to calculate the value in the 1st level
- The whole arrangement is fixed!
Example 6 – Magic Triangle

6 2 5
Example 6 – Magic Triangle
Example 6 – Magic Triangle
Example 6 – Magic Triangle

• Solution 2
• Exhaust all permutations of the Nth level
• Calculate the values of the whole triangle from the bottom to top
• Verify if the numbers are distinct

• Number of permutations = \(\frac{(N\times(N+1))}{2} P_N \)
• When \(N \) is 5, the number of permutations = 360360
• Fast enough to solve the problem
Example

- HKOJ T161 Apple Race
Branch & Bound

- During the searching, some invalid states may be visited
- When the intermediate state is known to be invalid, stop branching from it
- When the intermediate state gives an unsatisfied answer, stop branching from it
Example 2 – again

• Let’s go back to example 2
• Now $A = \{2, 9, 10, 3, 7, 2, 5, \ldots\}$ and $M = 16$
• Use the same technique again
Example 2 – again

• Some of the states are useless!
Example 2 – again

- Sum of the chosen numbers > 16
- No need to branch anymore
Procedure exhaustion(int x, int sum)
 If sum > M then return
 If x <= N then
 choose[x] = true
 exhaustion(x + 1, sum + A[x])
 choose[x] = false
 exhaustion(x + 1, sum)
 Else
 if sum = M then
 output the numbers that are chosen
Example 2 – Pseudocode 3

Procedure exhaustion(int x, int sum)
 If sum > M then return
 If solution is found then return
 If x <= N then
 choose[x] = true
 exhaustion(x + 1, sum + A[x])
 choose[x] = false
 exhaustion(x + 1, sum)
 Else
 if sum = M then
 output the numbers that are chosen
Example 2 – again

- Constant optimization
- The time complexity is not affected much – still $O(2^N)$
- But much less operations are done
- Search meaningful states only
Example

- HKOJ 20750 8 Queens Chess Problem
Example 6 – Bin Packing

• You have N objects to be packed in some identical bins.
• Each of the bins has the same capacity C and can hold objects of total volume not exceeding C.
• Given the volume Vi of each object, at least how many bins are needed to pack all N objects?
• Example:
 • N = 5, C = 50
 • V = {10, 20, 30, 50, 20}
 • The objects can be put into 3 bins: {10, 20}, {30, 20}, {50}
Example 6 – Bin Packing

• An obvious solution is to try all possibilities
• Put the first object into a new bin
• For the second object, try to put it into an existing and large enough bin, or try to put it into a new bin
• For the third object, try to put it into an existing and large enough bin, or try to put it into a new bin
• ...
• Find the minimum number of bins among the possibilities
Example 6 – Bin Packing

• Not fast enough
• More optimization and pruning is needed
Example 6 – Bin Packing

• If the number of bins used in the current state is greater than or equal to the best answer by far, the state can be discarded
• The number of bins used will not decrease later
• It cannot help to reduce the answer
Example 6 – Bin Packing
Example 6 – Bin Packing

{10,30}, {20,30}, {50}

{10}, {20}, {50}, {30}

{10}, {20, 30}, {50}
Example 6 – Bin Packing

• Still not fast enough

• If the object can completely fill a bin, then the object must be put in that bin

• Use up the whole bin -> no capacity is wasted

• As it is the optimal way, we do not need to consider other cases
Example 6 – Bin Packing

\{\} \\
\{10\}, \{20\} \\
\{10\}, \{20, 30\} \\
\{10\}, \{20\}, \{30\} \\
\{10, 30\}, \{20\}
Example 6 – Bin Packing

{10}, {20}

{10}, {20, 30}

{10, 30}, {20}

{}
Example 6 – Bin Packing

• Still not fast enough

• Sort the objects in descending order of volume
• A suboptimal solution is generated faster
• No need to consider much about the distribution of small objects

{50}, {30}, {30}
{10} {20} {30}
{10, 20}, {30}
{10}, {20, 30}
Example 6 – Bin Packing

- Still not fast enough
- Sort the objects in descending order of volume
- A suboptimal solution is generated faster
- No need to consider much about the distribution of small objects
Example 6 – Bin Packing

- Still not fast enough
- Maybe consider other implementations
- For each bin, try to choose some objects to put into it while keeping the volume not exceeding C
- Try to add one more bin if it is not enough
- Repeat until a valid arrangement is made
Example 6 – Bin Packing

• Many meaningless repetitions
• For example, \{1, 2\} \{3, 4\} and \{3, 4\} \{1, 2\} will be considered twice

• For a new bin, the first unselected object must be put into it
• Avoid permutation of bins
Example 6 – Bin Packing

• Still not fast enough?????
• Try to stop the program after a number of trials
• Do not guarantee a correct solution
• Usually give you a suboptimal answer
Example 6 – Bin Packing

• Using a mix of pruning and optimization, you may eventually solve the problem
• Be creative
• Consider different ways to cut the redundant states
• Luck may be important
• Random may be useful
Example

• HKOJ 01049 Chocolate
Practice problems

• HKOJ 01049 Chocolate
• HKOJ 01050 Bin Packing
• HKOJ 20750 8 Queens Chess Problem
• UVA 307 Sticks
• UVA 524 Prime Ring Problem
Summary

• Exhaustion is useful to solve subtasks with small constraints
• Easy to do even you have no idea about the full solution
• Give you some patterns about the answers
Summary

• Exhaustion is actually very common (only in subtasks)
• Appear in almost every HKOI-TFT
• Don’t hesitate to use it
• Don’t ignore it and spend all the time on other subtasks
Example

• HKOJ T171 Optimal Bowing