Data Structure(III)

ian
Things that we would talk about

- Disjoint set
- Segment tree
- Binary indexed tree
- Trie
Disjoint set

- Keep tracking elements belong to which subset (non-overlapping)
- Support two operation
 - Union (merge two subset into one)
 - Find (see if element x belong to which subset)
Disjoint set

- We use a forest to represent this
- Each node is an element
- Two elements are in the same subset if they are in the same tree. Which means the root for two elements is the same.
- Merging two subsets equals to merging two trees into one.
- Below we have two subsets.
Implementing Disjoint Set

- We define parent(x) as parent of x
- Int find(int x)

 while (x is not root) x = parent(x)

 return x
- Void merge(int x, int y)

 set parent of x to y
- If x is in the same subset with y, find(x) = find(y)
- Otherwise find(x) <> find(y)
- Time complexity for find is O(N)
- Time complexity for merge is O(1)
- We can make it faster
Path Compression
Path Compression

- Each time we find the root of x, we change the parent all of its ancestor including x to root.
- int find(int x)

 if x is root

 return x

 int root = find(parent(x))

 set root as parent of x

 return root

- This make find operation $O(N \log N)$
Union by Rank

- Idea if simple. We should avoid making tree tall. So each find operation use less time.
- Define height of the tree as the max of distance of root to its leaves.
- When we union tree S and tree T:
 - If height(S) > height(T)
 set parent of root(T) to root(S)
 - If height(S) < height(T)
 set parent of root(S) to root(T)
- Time complexity O(N log N)
Extra : Tricks About Heuristic Merging

- Union by rank is a kind of heuristic merging. We merge smaller (shorter thing) into larger thing.
- As height of tree would only be increased by 1 when two tree have the same height. Meaning height at most increase log N times. So height of the resultant tree is log N.
- A trick which is called Heuristic Merging or merging smaller into larger is basically using the same idea.
- We iterate through smaller set and put it in larger set.
- Such implementation would always have O(N log N).
- Example : NP1612, APIO121
Disjoint Set

- If we apply union by rank and path compression together, we would get $O(\alpha(N))$ for each operation. Where α is inverse Ackermann function.
- It is very small for large N. So we basically can treat it as constant
- But for most of the times using only path compression is sufficient.
Practice Problems for DSU

- HKOJ N1511
- CF 766D
Segment Tree

- Segment tree is a data structure that supports range query and update.
- It is a binary tree.
- Each node represents a segment.
- Assume node v maintains data of $[l, r]$.
 - Left child maintains $[l, \text{mid}]$.
 - Right child maintains $[\text{mid} + 1, r]$.
 - Where $\text{mid} = \frac{(l + r)}{2}$.
- As each time interval is divided by 2, the height of the tree is $\log N$.
Segment Tree

Segment Tree for $A = \{1, 3, 5, 7, 9, 11\}$

(picture from hacker earth)
Classical Problem for Segment Tree

- Range minimum(maximum) query
 - Given an integer A
 - Query(l, r)
 - Ask for minimum element in [l; r]
 - Update(id, val)
 - Update element in position id to val
- EX : M0921
Classical Problem for Segment Tree

- Maximum subarray problem
 - Given an integer array A
 - Query(l, r)
 - Find maximum sum of subarray [a; b] such that l <= a <= b <= r
 - update(id, val)
 - Update element in position id to val
- EX : M0923
Classical Problem for Segment Tree

- Sweep Line
- Given N rectangle, find union area
- [Link](http://codeforces.com/blog/entry/20377)
- EX : M1633
Implementation

- `update(id, x, y, pos, val) // update value in pos to val`

 node id maintain [x; y]
 If x == y
 a[pos] = val
 return
 mid = (l + r) / 2
 If (pos <= mid) update(id * 2, x, mid, pos, val)
 else update(id * 2 + 1, mid + 1, y, pos, val)
 a[id] = max(a[id * 2], a[id * 2 + 1])
Implementation

- query(int id, int x, int y, int l, int r) // find ans in [l; r]

 if (out of range)
 return -1

 if (l <= x and y <= r)
 return a[id]

 mid = (l + r) / 2

 return

 max(query(id * 2, x, mid, l, r), query(id * 2 + 1, mid + 1, y, l, r)
Practice Problems for Segment Tree

- CF 339D
- CF 380C
Finding LCA using Segment Tree

- http://codeforces.com/blog/entry/16221
Binary Indexed Tree

- It is a simplified segment tree
- Define lowbit(x) as the value of the rightmost bit in binary representation of x
- Let $x = 22 = 10110_2$, lowbit(x) = $00010_2 = 2$
- Node x maintain information for $[x - \text{lowbit}(x) + 1, x]$
- lowbit(x) = $x \& -x$
Binary Indexed Tree

• Given an array A
• Support two operation
 – update(id, val)
 • Add val to A[id]
 – sum(id)
 • Find sum of A from 1 to id
BIT Visualization

Picture from
https://www.hrwhisper.me/binary-indexed-tree-fenwick-tree/
Implementing BIT

- **Add** (id, val)

  ```
  while id <= N
    add val to BIT[id]
    id = id + id & -id  ←--- adding its lowbit
  ```

- **Sum** (id)

  ```
  ans = 0
  while id > 0
    add BIT[id] to ans
    id = id - id & -id  ←--- subtracting its lowbit
  ```
Binary Indexed Tree

BIT Practice Problems

- CF 830B
- CF 369E
Trie

- Trie is a data structure that stores string
- It is a Tree
- Each edge represents an alphabet
- The string represented by node v is the path from the root to v
- A node also has to store whether the string exists in trie
Trie

- Trie supports two operations
 - Adding a string S
 - Finding a string S
- Each of them is $O(|S|)$
Implementing Trie

- Very easy
- **For the add operation**
 - Start from root
 - If there isn’t an edge represent current alphabet, add an edge
 - Move to the next node via the edge represent current alphabet
 - Check for the next alphabet
 - If it is the end of the string, add a finish mark to the node
- **For the find operation, it is similar to add. But we have to check if there is a finishing mark in the last node**
Trie visualization

Picture from wikipedia
Practice Problems for Trie

- CF 514C
- CF 817E