Dynamic Programming
(III)

Alex Tung
14 April 2018
Today’s highlights

• Ugly state DP
• DP Optimization

• Note: Some materials from DP (III) in 2015 are not covered in this lesson. You are encouraged to study them yourself.
Ugly state DP

• We have seen “nicer” DP problems
 • For example, count number of paths from (1,1) to (N,M)
 if (i,j) is blocked
 \[dp[i][j] = 0; \]
 else
 \[dp[i][j] = dp[i-1][j] + dp[i][j-1] \]

• But the state representation is not always nice!
 • For example, bitmask DP
Given a N*M grid (N <= 100, M <= 10)
Some cells are hills (‘H’), some plains (‘P’)
You can place artillery (炮兵) only in ‘P’ cells
Artillery squads cannot attack each other
Their attack range:
..X..
..X..
XXPXX
..X..
..X..
..X..
NOI 2001 炮兵陣地

• Your task is to find the maximal number of artillery squads that may be placed

• Notice that M is small

• How to DP?
Analysis

• Proceed row by row
• Assume the squads on row 1 ... (i-1) are fixed

• One can place a squad in cell (i, j) iff:
 • [Previous rows] Cells (i-1, j) and (i-2, j) are empty
 • [Current row] Cells (i, j-2), (i, j-1), (i, j+1) and (i, j+2) are empty
 • [Current cell] Cell (i, j) is ‘P’
Representing the states

• [Previous rows]
• We see that squad placement on rows 1 ... (i-3) does not affect row i
• Only need to know the “state” of the previous two rows
• Three possibilities
 • Use base-3 integers to encode
 • 0 = Case 1
 • 1 = Case 2
 • 2 = Case 3
State transition

• [Current row]

• When we do state transition, we select a subset of \{1, 2, \ldots, M\} to put squads on.

• To prevent attacking each other, make sure adjacent values differ by at least 3.

• \{1, 4, 8\} is ok, {} is ok, while \{1, 5, 7\} is not.
Algorithm

for i from 1 to N
 for j from 0 to $3^M - 1$
 for all valid row patterns //e.g. {1, 4, 8}
 if (all corresponding positions are ‘P’) and (none attacked by squads on previous rows)
 j’ = new state
 c = size of row pattern // {1, 4, 8} \rightarrow c = 3
 dp[i][j’] = max(dp[i][j’], dp[i-1][j] + c)
Summary

• Time complexity: $O(3^M \times N \times (\# \text{ row patterns}))$

• Implementation details may be complicated

• If you want to submit:
 • http://wcipeg.com/problem/noi01p2

(both require registration, of course)
Further optimization

• Skip the state if $dp[i-1][state] = NINF$

• Not many states are reachable due to the restriction on same row placement

• e.g. 2212103 is not reachable
With Optimization

for i from 1 to N
 for j from 0 to \(3^M - 1\)
 if \(dp[i-1][j] = -\text{INF}\)
 continue
 for all valid row patterns //e.g. \{1, 4, 8\}
 if (all corresponding positions are ‘P’) and
 (none attacked by squads on previous rows)
 j’ := new state
 c := size of row pattern //\{1, 4, 8\} \(\rightarrow c = 3\)
 dp[i][j’] := max(dp[i][j’], dp[i-1][j] + c)
Practice Problems (Ugly State DP)

• CF342D Xenia and Dominoes
• HKOJ T112 Tetrisudoku
Next: DP Optimization

- Monotone Queue
- Convex Hull Trick
- Divide and Conquer
Why Optimize?

• Suppose you have a correct DP formula (state definition, state transition)
• Sometimes, the DP may not run in time!
• Four main ways to solve:
 • Explore non-DP solutions
 • Write auxiliary DPs (DP2\[]\[], DP3\[]\[], ...) to speed up
 • Come up with alternative DP formulas
 • **Optimize DP transition** ➔ What we will explore today
DP Optimization

- Monotone Queue
Optimize using Monotone Queue

• The basic form of DP formula:
 \[dp[i] = \max_{L(i) \leq j < i} (dp[j]) + f(i) \]

• \(L(i) \) is **increasing**
 • Side note: If \(L(i) \) is not increasing, use segment tree to store, retrieve, and update \(dp \) values

• May replace \(dp[j] \) by any function depending on \(j \)
 • e.g. \(g(j) = dp[j] \times 2 - j \)
Optimize using Monotone Queue

• Naïve implementation: $O(N^2)$

 for i from 1 to N

 $dp[i] = -\infty$

 for j from $L(i)$ to $i - 1$

 $dp[i] = \max(dp[i], f(i) + g(j))$

• We can do better!
Bowling for Numbers ++

• CCC 2007 Stage 2 Problem

• You have N (N<=10000) bowling pins and K (K<=500) bowling balls, each ball has width w (w<=100)
• Each pin has a score s[i] from -10000 to 10000
• You are allowed to miss

• Maximum achievable score = ?
Bowling for Numbers ++

Sample (N = 9, K = 4, w = 3)
• 2 8 -5 3 5 8 4 8 -6
• X X -5 3 5 8 4 8 -6 (ball 1, score = 10)
• _ _ -5 X X X 4 8 -6 (ball 2, score = 26)
• _ _ -5 _ _ X X X -6 (ball 3, score = 38)
• _ _ -5 _ _ _ _ _ -6 (ball 4, score = 38)

• Answer = 38
Bowling for Numbers ++

• What if all pins have non-negative values?
 • Then, it is always better to hit more pins than to miss

• $dp[i][j]$: max. value if we use i balls to hit pins 1...j
• $dp[i][j] = \max(dp[i][j-1], dp[i-1][j-W]$
 + sum($s[j-W+1]...s[j]))$ //roughly

• $O(NK)$
• CCC 2007 Stage 1 Senior Q5
Bowling for Numbers ++

• Unfortunately, such is not the case in the current task
• We may sometimes want to “avoid” negative values
DP State definition

• Let $ps[i] = s[1] + s[2] + ... + s[i]
 • Partial sum

• Let $dp[i][j]$ be the maximum achievable score with i hits and the rightmost hit pin being j

• $dp[0][0] = 0$

• $dp[0][i] = -\text{INF}$ for $i > 0$
 • Otherwise, error --- for example, a negative pin may be “skipped” without cost
Two cases

• Let \(dp[i][j] \) be the maximum achievable score with \(i \) hits and the rightmost hit pin being \(j \)
• We assume the hits are from left to right

• Two cases:
 • Case 1. The \(i^{th} \) hit does not overlap with the \((i-1)^{th}\) hit
 • Case 2. The \(i^{th} \) hit overlaps with the \((i-1)^{th}\) hit
Transition formula

• To calculate $dp[i][j]$,
• Let $M1 = \max_{0 \leq k < j - w} (dp[i-1][k] + ps[j] - ps[j-w])$
 • Case 1
 • Use $dp2[i-1][k] := \max(dp[i-1][1], \ldots, dp[i-1][k])$
• Let $M2 = \max_{j-w \leq k < j} (dp[i-1][k] + ps[j] - ps[k])$
 • Case 2
 • Use monotone queue to optimize!

• Then $dp[i][j] = \max(M1, M2)$
Monotone Queue: Step by step

• Here is how the monotone queue (actually a deque) works.

• Recall the criteria:
 • $dp[i] = \max_{L(i) \leq j < i} (f(i) + g(j))$
 • $L(i)$ is increasing

• We maintain a queue $Q[]$ of indices such that
 • $Q[j] < Q[j+1]$
 • $g(Q[j]) \geq g(Q[j+1])$

for all j.
Monotone Queue: Step by step

• Step 1: Pop elements in the front that are “out of bounds”

```plaintext
while (Q not empty) and (Q[l] < L(i))
    l++;
```

(Here, we use an array and two pointers, l and r, to represent the deque.)
Monotone Queue: Step by step

- Step 2: Update answer using Q[1]

 if (Q not empty)

 \[
 dp[i] = f(i) + g(Q[1]);
 \]
Monotone Queue: Step by step

• Step 3: Pop elements at the back that have small values

while (Q not empty) and (g(Q[r]) < g(i))
 r--;
Monotone Queue: Step by step

• Step 4: Insert i at the back

Q[++r] = i;
Monotone Queue: Step by step

1. while (Q not empty) and (Q[l] < L(i))
 l++;
2. if (Q not empty)
 dp[i] = f(i) + g(Q[l]);
3. while (Q not empty) and (g(Q[r]) < g(i))
 r--;
4. Q[++r] = i;
Summary

• Original time complexity: $O(N^2K) / O(NKw)$
• Optimized time complexity: $O(NK)$

• Monotone queue optimization reduces DP time complexity by an order of N

• We can use rolling array to reduce memory complexity to $O(N)$
Final step before AC

• $N = 2$, $K = 1$, $w = 2$
• $-1 1$

• Answer = 1, but cannot get from our dp...

• Solution: add $(w - 1)$ copies of 0s at the end
break;
DP Optimization

• Monotone Queue
• Convex Hull Trick
Convex Hull Trick (CHT)

• The earliest CHT task that I know is “Batch Scheduling” in IOI 2002
 • 11 contestants got full scores :o

• Other occurrences in big competitions:
 • APIO 2010 Commando
 • APIO 2014 Split the Sequence

• Something a good IOI contestant should know :D
Convex Hull Trick (CHT)

• The basic form of DP formula:
 \[dp[i] = \max_{j<i}(dp[j] + f[i] \times g[j]) \]

• Intuitively looks like \(y = mx + c \), a line on \(\mathbb{R}^2 \)

• We may apply CHT if \(g \) is monotone
• If \(f \) is also monotone, then it will be even easier
CF189C Kalila and Dimna in the Logging Industry

• Problem reduces to:

• Given N, a[i], b[i], find indices p_1, ..., p_k such that p_1 = 1, p_k = N, p_i < p_{i+1} for all i, and sum(a[p_{i+1}] * b[p_i]) is minimal. Output that minimal sum.

• Important constraints:
 • a[] is (strictly) increasing
 • b[] is (strictly) decreasing
CF189C Kalila and Dimna in the Logging Industry

- e.g. $N = 6$
- $a[] = \{1, 2, 3, 10, 20, 30\}$
- $b[] = \{6, 5, 4, 3, 2, 0\}$
- Choose indices 1, 2, 4, 6
- Choose indices 1, 3, 6
 which is better (and, in fact, the best)
CF189C Kalila and Dimna in the Logging Industry

• Let \(dp[i] \) = the best result obtainable by picking indices ending with \(i \)
 - \(dp[1] = 0 \)
 - \(dp[i] = \min_{j<i}(dp[j] + a[i] \times b[j]) \)
 - Not max this time

• Naïve DP transition: \(O(N^2) \)
• Target: \(O(N) \) !!
Key idea of CHT

• Let us pick two indices j and k (1 $\leq j < k < i$)
• When will we choose j instead of k? Or vice versa?
Key idea of CHT

• When will we choose j instead of k? Or vice versa?

k better than j

\[dp[j] + a[i] \times b[j] > dp[k] + a[i] \times b[k] \]

\[\iff \frac{(dp[j] - dp[k])}{(b[j] - b[k])} > -a[i] \]

Does it look like \(\frac{y_2 - y_1}{x_2 - x_1} \)?

Let \(m(j, k) = \frac{(dp[j] - dp[k])}{(b[j] - b[k])} \)
Key idea of CHT

k better than j
\[\iff \frac{dp[j] - dp[k]}{b[j] - b[k]} > -a[i] \]

Does it look like \(\frac{y_2 - y_1}{x_2 - x_1} \)?

Let \(m(j, k) = \frac{dp[j] - dp[k]}{b[j] - b[k]} \)

(We assume \(j < k \) every time we write \(m(j, k) \).)
Key idea of CHT

k better than j <=> m(j, k) > -a[i]

- **Property 1**: If m(j, k) < m(k, l), then there is no need to consider k.
 - **Reason**: there are no cases where k must be chosen

- If m(j, k) > -a[i], then surely m(k, l) > -a[i]. Then l is even better than k
- If m(j, k) <= -a[i], then j is no worse than k
Key idea of CHT

k better than j <=> m(j, k) > -a[i]

• **Property 2**: If m(j, k) > -a[i], there is no need to consider j in subsequent steps (steps i+1, ..., N).
 • Reason: a is (strictly) increasing, so
 (-a[i]) > (-a[i’]) for any i’ > i
 • Then m(j, k) > -a[i] > -a[i’]
Key idea of CHT

• **Property 1**: If $j < k < l$ and $m(j, k) < m(k, l)$, then there is no need to consider k.

• **Property 2**: If $m(j, k) > -a[i]$, there is no need to consider j in subsequent steps (steps $i+1$, ..., N).

• What do these two properties give us?
Key idea of CHT

- **Property 1**: If $j < k < l$ and $m(j, k) < m(k, l)$, then there is no need to consider k.

- **Property 2**: If $m(j, k) > -a[i]$, there is no need to consider j in subsequent steps (steps $i+1$, ..., N).

- Property 1 means that we only need to maintain a deque $q[L...R]$, such that $m(q[i], q[i+1]) \geq m(q[i+1], q[i+2])$.
Key idea of CHT

• **Property 1**: If \(j < k < l \) and \(m(j, k) < m(k, l) \), then there is no need to consider \(k \).

• **Property 2**: If \(m(j, k) > -a[i] \), there is no need to consider \(j \) in subsequent steps (steps \(i+1, \ldots, N \)).

• Property 2 means that we can pop \(q[L] \) (front) from the deque, until \(m(q[L], q[L+1]) \leq -a[i] \), to get the optimal answer.
CHT: Step by step

• Step 1: Pop elements in the front that we will never use again [Property 2]

\[
\text{while (q’s size } \geq 2) \text{ and (m(q[L], q[L+1]) > -a[i])}
\]

\[
L++;
\]
CHT: Step by step

• Step 2: Update answer using q[L]

 if (Q not empty)
 dp[i] = dp[q[L]] + a[i] * b[q[L]];
CHT: Step by step

• Step 3: Pop elements at the back that will never be considered [Property 1]

\[
\text{while (q's size } \geq 2 \text{) and } (m(q[R-2], q[R-1]) < m(q[R-1], i)) \\
R--;
\]
CHT: Step by step

• Step 4: Insert i at the back

q[R++] = i;
CHT: Step by step

1. while (q’s size >= 2) and (m(q[L], q[L+1]) > -a[i])
 L++;
2. if (q not empty)
 dp[i] = dp[q[L]] + a[i] * b[q[L]];
3. while (q’s size >= 2) and (m(q[R-2], q[R-1]) < m(q[R-1], i))
 R--;
4. q[R++] = i;
Summary

• Notice that CHT (at least in this problem) is simply a variant of monotone queue optimization.
• The monotonicity does not lie in the values itself, but in the “slope function”
• Time complexity: $O(N)$
CHT: Further complications

- \(dp[i] = \max_{j<i}(dp[j] + f[i] \cdot g[j]) \)

- \(f/g = i/i, i/d, d/i, d/d, n/i, n/d \)
 - \(i \): increasing, \(d \): decreasing, \(n \): neither
 - \(i/i \) and \(d/d \) are not interesting
 - For \(n/i \) and \(n/d \), property 2 does not hold; need b-search

- Transition formula: max, min

- You have to write down the condition for “\(k \) better than \(j \)” and do the algebra correctly
CHT: Further complications

• When g is not strictly monotone (i.e. may have same values), direct computation of slope formula will give division by 0

• Also, using double for slope calculation may sometimes result in precision error
DP Optimization

• Monotone Queue
• Convex Hull Trick
• Divide and Conquer
Divide and Conquer (D&C) Optimization

• The basic form of DP formula:
 \[dp[i][j] = \max_{k<j}(dp[i-1][k] + f(k, j)) \]

• Let \(C[i][j] \) be the smallest index \(k' \) such that
 \[dp[i][j] = dp[i-1][k'] + f(k', j) \]

• In other words, the transition from \((i-1, k') \) to \((i, j) \) is optimal among all choices of \(k \)

• We can apply D&C Optimization if \(C[i][j] \leq C[i][j+1] \) for all \(j \)
D&C Optimization

• $C[i][j] \leq C[i][j+1]$ for all j

• Another form of monotonicity!
Given N, G, and an $N \times N$ symmetric matrix $s[][]$ containing values from 0 to 9

• $s[i][i] = 0$ for all i

• Divide $[1, N]$ into G disjoint groups $[1, a_1], [a_1 + 1, a_2], \ldots, [a_{G-1} + 1, a_G]$ ($a_G = N$)

• For each group $[L, R]$, calculate $\text{sum}(s[i][j] \mid i$ and j are between L and $R)$

• Add them up to get the total cost of this partition

• Find the minimal cost
CF321E Ciel and Gondolas

- 5 2 (N = 5, G = 2)
- 0 0 1 1 1
- 0 0 1 1 1
- 1 1 0 0 0
- 1 1 0 0 0
- 1 1 0 0 0
- 1 1 0 0 0

- Answer = 0 (a₁ = 2, a₂ = 5)
CF321E Ciel and Gondolas

• Let $dp[i][j] = \text{minimal cost of partitioning } [1, j] \text{ into } i \text{ groups}$

• Let $f(L, R) = \sum (s[i][j] \mid i \text{ and } j \text{ are between } L \text{ and } R)$

• $dp[i][j] = \min_{k<j} (dp[i-1][k] + f(k+1, j))$

• Answer = $dp[G][N]$
CF321E Ciel and Gondolas

• \(dp[i][j] = \min_{k<j} (dp[i-1][k] + f(k+1, j)) \)

• \(f(k+1, j) \) can be calculated in \(O(1) \) by 2D partial sum

• Naïve solution has time complexity \(O(GN^2) \)
• Target: \(O(GN \log N) \)
Recall the condition for applying D&C Optimization:

- Let $C[i][j]$ be the smallest index k' such that $dp[i][j] = dp[i-1][k'] + f(k', j)$.
- Check that $C[i][j] \leq C[i][j+1]$ for all j (See appendix)
D&C Optimization: Step by step

• The key idea is to write a recursive function to perform the DP transition

• `void solve(int i, int L, int R, int optL, int optR);`

• Let M = (L+R)/2
• Find dp[i][M] and C[i][M]. Then call solve() for the left and the right parts.
D&C Optimization: Step by step

• Step 1: Base case

 if (L > R) return;
D&C Optimization: Step by step

• Step 2: Find $dp[i][M]$ and $C[i][M]$

```c
int opt = optL;  //opt represents $C[i][M]$
for(p = optL + 1; p <= optR; p++)
    if(dp[i-1][p] + f(p+1, M) < dp[i-1][opt] + f(opt+1, M))
        opt = p;
```
D&C Optimization: Step by step

• Step 3: Update \(dp[i][M] \)

\[
dp[i][M] = dp[i-1][opt] + f(opt+1, M);\]
D&C Optimization: Step by step

• Step 4: Recursively solve the left and right parts

```c
solve(i, L, M - 1, optL, opt);
solve(i, M + 1, R, opt, optR);
```
D&C Optimization: Step by step

void solve(int i, int L, int R, int optL, int optR){
1. if (L > R) return;
2. int opt = optL; //opt represents C[i][M]
 for(p = optL + 1; p <= optR; p++)
 if(dp[i-1][p] + f(p+1, M) < dp[i-1][opt] + f(opt+1, M))
 opt = p;
3. dp[i][M] = dp[i-1][opt] + f(opt+1, M);
4. solve(i, L, M – 1, optL, opt);
 solve(i, M + 1, R, opt, optR);
}
Back to the task...

• Set $dp[0][0] = 0$ and $dp[0][i] = \text{INF}$ for $i > 0$
• Call $\text{solve}(i, 1, N, 1, N)$ for $i = 1, \ldots, G$

• It can be shown that each $\text{solve}()$ runs in time complexity $O(N \log N)$

• Overall time complexity: $O(GN \log N)$
Minor details

• Use rolling array for DP calculation

• Huge input (4000^2 numbers), need fast I/O methods to get AC
Practice Problems (DP Opt)

• CF311B Cats Transport
• CF660F Bear and Bowling 4
• Hackerrank Guardians of the Lunatics
• APIO 2010 Commando
• APIO 2014 Splitting the Sequence
...and more in the CF blog mentioned in reference
Other interesting DP Problems

• CF 590D Top Secret Task
• CF 489E Hiking
• HKOJ M1331 Resources Conflict
• HKOJ M1724 Guess the Number
• HKOJ M1741 Fill in the Bag
References

• Tasks from HKOJ, Codeforces, CCC, NOI
• http://codeforces.com/blog/entry/8219
 • A summary of different types of DP Optimization
Model solutions

• Bowling for Numbers ++
 • http://ideone.com/tY1Kk3

• Kalila and Dimna in the Logging Industry
 • http://ideone.com/y47MiU

• Ciel and Gondolas
 • http://ideone.com/7Mpq2o
The End

• PM Session: Mini-Competition III

• Group mini-comp, ACM style! :D
Appendix: Why $C[i][j] \leq C[i][j+1]$ in CF321E

Alex Tung
April 14, 2018

In today’s DP (III) lecture, I promised to write a proof that D&C optimization can be used for solving Ciel and Gondolas. Here it is.

Recall that $dp[i][j] :=$ minimal cost of partitioning $[1, j]$ into i groups, and we have the simple transition formula

$$dp[i][j] = \min_{k < j} (dp[i-1][k] + f(k+1, j))$$

where $f(l, r)$ equals the sum of elements in the subarray $s[l..r][l..r]$.

1 The First Step

To simplify notations a bit, assume we are transitioning from $old[0..n]$ to $dp[0..n]$ (instead of from $dp[i-1][0..n]$ to $dp[i][0..n]$, and write $C[j]$ for $C[i][j]$. (All this is done to get rid of the somewhat irrelevant index i.)

So we want to prove $C[j] \leq C[j+1]$, where $C[j]$ is the smallest index k minimizing $old[k] + f(k+1, j)$. It is usually a good idea to prove by contradiction: suppose $C[j] > C[j+1]$, then there must be something wrong.

2 Inequalities

Here are two simple inequalities.

- $old[C[j]] + f(C[j] + 1, j) < old[C[j+1]] + f(C[j] + 1, j)$
 ($\because C[j]$ is the best index for $dp[j]$.)

- $old[C[j+1]] + f(C[j+1] + 1, j + 1) \leq old[C[j]] + f(C[j] + 1, j + 1)$
 ($\because C[j+1]$ is the best index for $dp[j+1]$.)

Add them up to get

$$f(C[j] + 1, j) + f(C[j+1] + 1, j + 1) < f(C[j] + 1, j + 1) + f(C[j+1] + 1, j).$$
3 Why is this absurd?

This is (almost) a proof without words:

So our assumption $C[j] > C[j+1]$ has led us to the inequality

$$f(C[j] + 1, j) + f(C[j+1] + 1, j+1) < f(C[j+1] + 1, j+1) + f(C[j+1] + 1, j).$$

But...

$$LHS = \text{5} + (\text{1} + \text{2} + \text{3} + \text{4} + \text{5} + \text{6} + \text{7} + \text{8} + \text{9})$$

$$RHS = (\text{1} + \text{2} + \text{4} + \text{5}) + (\text{5} + \text{6} + \text{8} + \text{9})$$

$$\therefore LHS - RHS = \text{3} + \text{7} \geq 0. \text{ Contradiction!}$$