
Dynamic	Programming	(I)
Charlie	Li

Reminder

• Assuming	all	variables	are	initialized	to	zero	in	all	the	codes	appearing	
in	this	powerpoint

Perquisites	– things	learned	before

• Recursion
• Divide	and	Conquer
• Time	complexity	analysis	(using	big	O	notation)

Fibonacci	sequence	- recall

• Define:
• f(1)	=	f(2)	=	1
• f(n)	=	f(n	- 1)	+	f(n	- 2)	for	n	>	2

• How	can	we	compute	f(n)?

Fibonacci	sequence	- recursion

• We	can	use	recursion	and	the	definition	of	f(n).
• Code:

int f	(int n)	{
if	(n	==	1	||	n	==	2)	return	1;
else	return	f(n	- 1)	+	f(n	- 2);

}

Fibonacci	sequence	- recursion

• Time	complexity?
• T(n)	=	T(n	- 1)	+	T(n	- 2)	+	1	=	O(f(n))	(or	simply	O(2n))
• And	we	know	f(n)	grows	pretty	quickly,	so	this	algorithm	runs	slow
• But	why?	Can	we	speed	up	the	computation?

Fibonacci	sequence	- recursion

• Lets	see	how	do	we	compute	f(6)

Fibonacci	sequence	- recursion

f(6)

f(5)

f(4)

f(3)

f(2) f(1)

f(2)

f(3)

f(2) f(1)

f(4)

f(3)

1(2) f(1)

f(2)

Fibonacci	sequence	- recursion

• As	we	can	see,	most	of	the	functions	are	evaluated	more	than	once
• We	say	these	computing	power	is	wasted
• How	can	we	improve	the	algorithm?

Fibonacci	sequence	- memorization

• One	way	to	optimize	is	to	store	the	evaluated	value	of	the	function	so	
that	we	do	not	need	to	compute	it	again
• Code:

int f	(int n)	{
if	(dp[n])	return	dp[n];
if	(n	==	1	||	n	==	2)	return	1;
else	return	dp[n]	=	f(n	- 1)	+	f(n	- 2);

}

• Lets	see	how	this	algorithm	looks	like

Fibonacci	sequence	- memorization

f(6)

f(5)

f(4)

f(3)

f(2) f(1)

f(2)

f(3)

f(4)

Fibonacci	sequence	- memorization

• As	we	can	see,	we	now	reduced	our	computation	a	lot.
• What	is	the	time	complexity	now?
• T(n)	=	T(n	- 1)	+	1	=	O(n)
• Wow,	now	we	can	compute	the	Fibonacci	sequence	in	very	short	time
• But	remember,	f(n)	grows	pretty	fast,	so	if	n	is	large,	you	may	need	to	
use	long	long or	HPA	for	the	calculations

Fibonacci	sequence	- memorization

• Here,	we	use	a	top	down	approach	to	solve	the	problem
• ie.	We	try	to	find	the	solution	to	our	problem	(f(n))	directly
we	find	the	solution	of	its	sub-problem	(f(n	- 1)	and	f(n	- 2))	whenever	
we	need	and	record	it	down	for	future	usage
• But	why	does	it	work?
• It’s	because	that	the	sub-problem	(f(n	- 1)	and	f(n	- 2))	of	our	problem	
(f(n))	can	be	calculated	in	the	same	manner	so	that	we	can	use	a	
recursion	to	get	the	work	done

Dynamic	programming

• No	we	are	learning	a	powerful	technique, dynamic programming
• A	problem	can	be	solved	using	dynamic	programming	should	fulfill:
• It	have	optimal	substructure

• An	optimal	solution	of	a	problem	can	be	constructed	efficiently	form	the	optimal	
solutions	of	its	sub-problems

• It	have	overlapping	sub-problems
• Can	be	broken	down	into	sub-problems	which	will	be	reused	several	times;	Or
• A	recursive	algorithm	for	the	problem	can	solve	the	sub-problems

• Also	we	will	define	a	‘state’	for	every	sub-problem	and	we	need	to	
make	sure	that	the	solution	to	a	certain	sub-problem	only	depends	on	
the	its	‘state’

Fibonacci	sequence	– bottom	up	DP

• Let	define	dp[n]	to	be	f(n)
• We	then	have	the	base	cases	dp[1]	=	dp[2]	=	1
• And	the	recurrence	relationship	of	the	problems	(aka.	transition	formula)	is

• dp[n]	=	dp[n	- 1]	+	dp[n	- 2]	for	n	>	2
• So	we	can	use	a	for	loop	to	do	this
• Code:

dp[1]	=	dp[2]	=	1;
for	(int i =	3;	i <=	n;	i++)	dp[n]	=	dp[n	- 1]	+	dp[n	– 2];

• When	you	apply	the	transition	formula,	make	sure	that	the	sub-problems	is	
already	solved	when	using	the	bottom	up	approach	

Maximum	subarray	sum	- problem

• Same	as	HKOI	Judge	01010	Diamond	Chain
• Let	a1,	a2,	a3,	…,	an be	a	sequence	with	length	n
• Define	subarray	of	the	sequence	to	be	the	list	ai,	ai+1,	…,	aj-1,	aj for	
some	i <	j
• The	problem	is	to	find	the	maximum	sum	of	the	subarray	if	we	
choose	i,	j	in	a	optimal	way
• If	all	ai are	negative,	the	answer	is	zero	(ie.	an	empty	subarray)

Maximum	subarray	sum	– brute	force

• We	can	use	brute	force	to	find	the	answer
• Code:

for	(int i =	1;	i <=	n;	i++)	for	(int j	=	i;	j	<=	n;	j++)	{
sum	=	0;
for	(int k	=	i;	k	<=	j;	k++)	sum	+=	a[k];
ans =	max(ans,	sum);

}

• Time	complexity?
• O(n3)

Maximum	subarray	sum	– brute	force

• We	can	use	partial	sum	(aka.	prefix	sum)	to	optimize	it
• Code:

for	(int i =	1;	i	<=	n;	i++)	sum[i]	=	sum[i - 1]	+	a[i];
for	(int i =	1;	i <=	n;	i++)	for	(int j	=	i;	j	<=	n;	j++)

ans =	max(ans,	sum[j]	– sum[i - 1]);

• Time	complexity?
• O(n2)
• Can	it	be	faster?
• Yes,	we	can	use	DP,	how?

Maximum	subarray	sum	- DP

• When	doing	DP	problems,	we	often	define	the	state	to	be	something	like	
“The	optimal	solution	from	1	to	i”	or	“The	optimal	solution	containing	i”
• Here,	we	use	the	latter	one
• We	define	dp[i]	to	be	the	maximum	subarray	sum	where	ai is	the	last	element	of	the	subarray
• ie.	dp[i]	=	max

$%&%'
∑ 𝑎*'
*+&

• And	the	answer	to	the	problem	is	max
$%'%,

𝑑𝑝[𝑖]
• Here,	the	optimal	solution	is	either	concatenate	the	next	element	to	the	
previous	one	or	let	it	be	the	only	element	(why?)
• So,	our	transition	formula	is
• dp[i]	=	max(dp[i - 1]	+	a[i],	a[i])

Maximum	subarray	sum	- DP

• Code:
for	(int i =	1;	i <=	n;	i++)	dp[i]	=	max(dp[i - 1]	+	a[i],	a[i]);
for	(int i =	1;	i <=	n;	i++)	ans =	max(ans,	dp[i]);

• Time	complexity?
• O(n)

Maximum	subarray	sum	- DP

“I	have	learned	that	we	can	use	divide	and	conquer	to	solve	the	same	
question	with	the	same	time	complexity,	why	should	I	learn	DP?”
• The	code	is	shorter	which	bring	a	lot	of	benefits
• Easier	to	debug
• Quicker	to	code

• DP	is	guaranteed	to	give	us	the	optimal	solution	if	we	define	the	state	
and	transition	formula	correctly
• However,	the	divide	and	conquer	solution	is	needed	if	we	are	finding	
the	online	maximum	subarray	sum	in	which	case	DP	is	not	the	fastest	
solution	(HKOI	Judge	M0923,	this	requires	some	data	structure)

Jumper	- problem

• In	a	city,	there	is	N	buildings,	counting	from	the	left,	the	ith building	
has	height	hi
• There	is	a	man	who	want	to	jump	from	building	1	to	building	N
• When	he	jump	from	building	i to	building	j,	the	energy	consumed	is	
|hi – hj|
• Although	he	can	jump	very	high,	but	he	is	so	scared	that	he	can	only	
jump	through	at	most	K	gaps	between	the	buildings
• Also,	he	can	only	jump	to	the	right
• What	is	the	minimum	energy	consumption?

Jumper	- DP

• Define	dp[i]	be	the	minimum	energy	consumption	for	the	man	to	
jump	to	building	i
• The	transition	formula	is
• 𝑑𝑝 𝑖 = 	 min

'6*%&7'
ℎ 𝑖 − ℎ[𝑗] + 𝑑𝑝[𝑗]

• Since	the	man	can	only	jump	from	a	building	between	i – k	and	i,	so	
we	just	need	to	find	the	minimum	one

Jumper	- DP

• Code:
for	(int i =	2;	i <=	N;	i++)	{

dp[i]	=	INF;
for	(int j	=	max(1,	i- k);	j	<	i;	j++)

dp[i]	=	min(dp[i],	dp[j]	+	abs(h[i]	– h[j]));
}

• Time	complexity?
• O(NK)

Longest	common	subsequence	- problem

• Given	two	string	S	and	T,	find	the	length	of	longest	common	
subsequence
• Here,	subsequence	of	a	string	S	is	any	string	that	can	be	obtained	by	
removing	some(possibly	none)	characters	of	S

• EG.
• S	=	“ABCDEFG”
• T	=	“XVBDGH”
• Longest	common	subsequence	=	“BDG”	(length	3)

Longest	common	subsequence	– brute	force

• It	is	not	an	easy	job	to	think	of	a	brute	force	solution	for	the	problem
• Perhaps	we	should	go	ahead	to	think	of	the	DP	solution
• Remember	what	I	have	talked	before
• When	doing	DP	problems,	we	often	define	the	state	to	be	something	
like	“The	optimal	solution	from	1	to	i”	or	“The	optimal	solution	
containing	i”
• This	time,	we	will	choose	the	former	one
• But	since	now	we	have	2	strings,	so	we	need	a	2D	array

Longest	common	subsequence	- DP

• Define	dp[i][j]	be	the	length	of	longest	common	subsequence	of	string	S[0],	
S[1],	…,	S[i]	and	string	T[0],	T[1],	…,	T[j]
• Transition	formula:
• dp[i][j]	=	max(dp[i - 1][j],	dp[i][j	-1])	if	S[i]	!=	T[j]
• dp[i][j]	=	max(dp[i - 1][j],	dp[i][j	– 1],	dp[i - 1][j	- 1]	+	1)	if	S[i]	==	T[j]

• If	S[i]	!=	T[j],	then	the	answer	will	be	just	the	same	as	we	either	
concatenate	S[i]	to	S[0],	S[1],	…	S[i - 1]	or	concatenate	T[j]	to	T[0],	T[1],	…,	
T[j	- 1]	without	changing	another	string
• But	if	S[i]	==	T[j],	there	may	be	one	more	option,	that	is	to	concatenate	
both	strings	at	the	same	time,	and	increase	the	previous	answer	by	1

Longest	common	subsequence	- DP

• Code:
for	(int i =	1;	S[i];	i++)	for	(int j	=	1;	T[j];	j++)	{

dp[i][j]	=	max(dp[i - 1][j],	dp[i][j	- 1]);
if	(S[i]	==	T[j])	dp[i][j]	=	max(dp[i][j],	dp[i - 1][j	- 1]	+	1);

}

• Time	complexity?
• O(|S||T|)

A	short	break

Knapsack	problem	- problem

• Given	N	items,	each	with	a	weight	wi and	value	vi
• Our	bag	have	a	capacity	of	K	which	means	for	any	set	of	items,	we	can	
put	them	in	iff their	total	weight	is	at	most	K
• We	want	to	maximize	the	total	value	of	items	that	we	put	into	our	
bag
• Noted	that	the	order	of	putting	items	does	not	matter
• for	each	item,	we	either	put	it	in	or	not	put	it	in

Knapsack	problem	– brute	force
• We	can	use	brute	force	to	find	the	answer
• Code:

for	(int i =	1;	i <=	(1	<<	N);	i++) {
sum_w =	0;
sum_v =	0;
for	(int j	=	0;	j	<	N;	j++)	{

if	(i &	(1	<<	j))	{
sum_w +=	w[j];
sum_v +=	v[j];

}
}
if	(sum_w <=	K)	ans =	max(ans,	sum_v);

}

Knapsack	problem	– brute	force

• Time	Complexity?
• O(2N)

• Seems	very	slow…
• How	can	we	do	faster?

Knapsack	problem	– wrong attempt

• Perhaps	we	may	define	the	efficiency	of	each	item	ei to	be	vi/wi

• And	perhaps	we	may	put	the	most	efficient	item	into	our	bag,	then	
the	second	and	so	on
• However,	this	is	wrong	because	we	cannot	cut	our	item	into	pieces
• Can	you	think	of	a	counter	example?

Knapsack	problem	– DP

• Define	dp[i][j]	to	be	the	largest	total	value	of	items	using	item	1,	item	
2,	up	to	item	i with	total	weight	at	most	j.
• The	answer	is	dp[N][K]
• The	transition	formula	is
• dp[i][j]	=	max(dp[i - 1][j],	dp[i - 1][j	– w[i]]	+	v[i])

• This	means	we	are	either	putting	or	not	putting	the	item	into	our	bag

Knapsack	problem	– DP

• Code:
for	(int i =	1;	i <=	N;	i++)	for	(int j	=	w[i];	j	<=	K;	j++)

dp[i][j]	=	max(dp[i][j],	dp[i - 1][j	– w[i]]	+	v[i]);

• Time	complexity?
• O(NK)

Knapsack	problem	- Variations

• What	if:
• Additionally,	the	bag	has	a	capacity	of	volume	M	and	each	item	has	volume	ui?
• We	can	pick	as	many	item	i as	we	want?
• We	can	pick	at	most	pi of	the	item	i
• We	can	pick	item	i only	if	we	have	picked	item	j	for	some	i?

Matrix	multiplication	- problem

• HKOI	Judge	01054
• A	m×n matrix	is	like	a	2D	array	of	numbers	with	m	rows	and	n	columns
• Let	A1 and	A2 be	matrices,	A1A2 exist	iff no.	of	columns	in	A1 equals	to	no.	of	
rows	in	A2

• Let	say,	A1 is	an	m×p matrix	and	A2 is	an	p×n matrix,	then	A1A2,	the	multiple	
of	two	matrices,	will	be	a	m×n matrix,	the	cost	of	such	operation	is	m×p×n
• Matrix	multiplication	is	associative,	ie.	(A1A2)A3 =	A1(A2A3)
• But	matrix	multiplication	is	not	commutative,	ie.	A1A2 !=	A2A1	generally
• Given	N	+	1	numbers,	namely	p1,	p2,	…	pn+1,	let	Ai be	a	pi×pi+1 matrix,	find	
the	minimum	cost	to	do	the	matrix	chain	multiplication

Matrix	multiplication	- problem

• Eg.
• A1 has	dimension	5×10
• A2 has	dimension	10×15
• A3 has	dimension	15×5
• If	we	calculate	(A1A2)A3,	the	total	cost	is	5×10×15	+	5×15×5	=	1125
• If	we	calculate	A1(A2A3),	the	total	cost	is	10×15×5	+	5×10×5	=	1000
• So	the	minimum	cost	is	1000

Matrix	multiplication

Final	
Matrix

Submatrix

Submatrix

… …

Submatrix

… …

Submatrix

Submatrix

… …

Submatrix

… …

Matrix	multiplication	- DP

• How	can	we	define	the	states?

Matrix	multiplication	- DP

• How	can	we	define	the	states?
• We	can	define	dp[i][j]	to	be	the	minimum	cost	to	multiply	AiAi+1…Aj

• And	the	answer	is	dp[1][N]
• Then	what	is	the	transition	formula?

Matrix	multiplication	- DP

• How	can	we	define	the	states?
• We	can	define	dp[i][j]	to	be	the	minimum	cost	to	multiply	AiAi+1…Aj

• And	the	answer	is	dp[1][N]
• Then	what	is	the	transition	formula?
• 𝑑𝑝 𝑖 𝑗 = min

'7*%&
𝑑𝑝 𝑖 𝑘 − 1 + 𝑑𝑝 𝑘 𝑗 + 𝑝 𝑖 ×𝑝 𝑘 ×𝑝 𝑗 + 1

• For	every	i,	j,	we	are	finding	the	optimal	way	to	cut	them	into	two	
submatrices
• We	now	have	both	the	states	and	the	transition	formula	but	how	can	
we	actually	calculate	all	dp[i][j]?	

Matrix	multiplication	– Wrong	DP

• Code:
for	(int i =	1;	i <=	N;	i++)	for	(int j	=	i +	1;	j	<=	N;	j++)	{

dp[i][j]	=	INF;
for	(int k	=	i +	1;	k	<=	j;	k++)	

dp[i][j]	=	min(dp[i][j],	dp[i][k	- 1]	+	dp[k][j]	+	p[i]	*	p[k]	*	p[j	+	1])
}

• Why	is	this	wrong?

Matrix	multiplication	– Wrong DP

• Code:
for	(int i =	1;	i <=	N;	i++)	for	(int j	=	i +	1;	j	<=	N;	j++)	{

dp[i][j]	=	INF;
for	(int k	=	i +	1;	k	<=	j;	k++)	

dp[i][j]	=	min(dp[i][j],	dp[i][k	- 1]	+	dp[k][j]	+	p[i]	*	p[k]	*	p[j	+	1])
}

• Remember	what	I	have	said	before:
• When	you	apply	the	transition	formula,	make	sure	that	the	sub-
problems	is	already	solved	when	using	the	bottom	up	approach	

Matrix	multiplication	- DP

• Due	to	the	nature	of	this	question,	it	is	a	little	bit	hard	to	design	the	
order	of	dp[i][j]	that	we	need	to	calculate,	it	will	be	better	if	we	use	a	
top	down	approach

Matrix	multiplication	– top	down	DP

• Code:
long	long solve(int i,	int j)	{

if	(i ==	j)	return	0;
if	(v[i][j])	return	dp[i][j];
v[i][j]	=	true;
dp[i][j]	=	INF;
for	(int k	=	i +	1;	k	<=	j;	k++)

dp[i][j]	=	min(dp[i][j],	solve(i,	k	- 1)	+	solve(k,	j)	+	p[i]	*	p[k]	*	p[j	+	1]);
return	dp[i][j];

}

Matrix	multiplication	– top	down	DP

• Time	complexity?
• No.	of	states:	O(n2)
• State	transition:	O(n)
• Total:	O(n3)

Practice	problems
Let’s	think	of	the	solutions

Palindrome	subsequence	- problem

• Given	a	string	S	with	length	N
• You	are	going	to	find	the	length	of	the	longest	palindrome	
subsequence
• A	subsequence	of	a	string	S	is	any	string	that	can	be	obtained	by	
removing	some(possibly	none)	characters	in	S
• A	palindrome	is	a	string	that	looks	the	same	after	it	is	reversed

• How	can	we	define	the	state	and	the	transition	formula?
• What	is	the	time	complexity	of	the	algorithm?

Palindrome	subsequence	– solution	1

• Let	T	be	a	string	obtained	by	reversing	S.
• The	answer	is	simply	the	longest	common	subsequence	of	S	and	T

• Why	is	this	true?

• Think	of	another	solusion

Palindrome	subsequence	– solution	2

• We	will	use	the	top	down	approach
• States:

• Define	dp[i][j]	to	be	the	length	of	maximum	length	of	palindrome	subsequence	for	
the	substring	S[i],	S[i+1],	…,	S[j]

• Transition	formulars:
• dp[i][j]	=	dp[i+1][j-1]	+	2	if	S[i]	==	S[j]	(this	means	we	cut	the	first	and	the	last	
character)

• dp[i][j]	=	max(dp[i+1][j],	dp[i][j	- 1])	if	S[i]	!=	S[j]	(this	means	we	cut	either	the	first	or	
the	last	character)

• Base	cases:
• dp[i][j]	=	0	if	i >	j
• dp[i][j]	=	1	if	i ==	j

• Time	complexity:	O(n2)

Balanced	parentheses	- problem

• Given	the	length	of	the	string	is	2N
• Find	the	no.	of	different	strings	such	that	it	contain	exactly	N	open	
brackets	‘(’	and	N	close	brackets	‘)’	and	it	is	balance
• We	say	the	parentheses	are	balanced	if	the	no.	of	open	brackets	is	
not	less	than	the	no.	of	close	brackets	in	any	prefix.
• Since	the	number	is	large,	you	are	only	required	to	output	the	answer	
mod	109 +	7

• How	can	we	define	the	state	and	the	transition	formula?
• What	is	the	time	complexity	of	the	algorithm?

Balanced	parentheses	- solution	1

• State:
• Define	dp[i][j]	to	be	the	no.	of	strings	(mod	109 +	7)	with	length	i,	containing	
exactly	j	open	brackets	(ie.	containing	exactly	i – j	close	brackets)	and	for	any	
of	its	prefix,	no.	of	open	brackets	is	no	less	than	no.	of	close	brackets

• Transition	formula:
• dp[i][j]	=	dp[i - 1][j	- 1]	(we	can	put	an	open	bracket)
• dp[i][j]	+=	dp[i – 1][j]	if	j	>	(i - 1)	- j	(we	can	also	put	a	close	bracket)
• Remember	to	mod	109 +	7

• Base	case:
• dp[1][1]	=	1	(or	dp[0][0]	=	1)

• Time	complexity:	O(n2)

Balanced	parentheses	- solution	2

• State:
• Define	dp[i]	to	be	the	no.	of	strings	(mod	109 +	7)	with	length	2i	such	that	the	string	
of	parentheses	is	balanced.

• Transition	formula:
• 𝑑𝑝[𝑖] 	= ∑ 𝑑𝑝 𝑗 − 1 𝑑𝑝[𝑖 − 𝑗]'

&+$ 	
• This	is	to	cut	the	string	into	a	prefix	and	suffix	(first	2j	and	last	2(i-j))	such	that	the	
prefix	is	balanced	after	removing	the	pair	of	outermost	parentheses	and	the	suffix	is	
balanced

• Remember	to	mod	109 +	7
• Base	case:

• dp[1]	=	1	(or	dp[0]	=	1)
• Time	complexity:	O(n2)
• The	sequence	dp[1],	…	dp[n]	is	also	known	as	catalen number

More	problems:

• Maximum	subarray	sum
• 01010	Diamond	Chain
• 01016	Diamond	Ring
• M0822	Diamond	Chain	II

• Knapsack	problem
• 05011	Coin
• T043	Need	for	speed

• Palindrome
• I0011	Palindrome
• CF	607B Zuma

More	problems:

• Parentheses
• CF	629C	Famil Door	and	Brackets

• Combinatorics
• CF	553A	Kyoya and	Colored	Balls

• Probabilities
• CF	540D	Bad	Luck	Island

• Extra
• M1724	Guess	the	Number

• Easier	to	solve	some	kind	of	‘reverse’	problem

