Cryptography

24-02-2018

Anson Ho
Hello Alice

A$@LSD

Eve

Bob

Origin

Cryptography

Hong Kong Olympiad in Informatics
Cryptography

Application - Military Communication

German soldier A

Alan Turing

Enigma

German soldier B
Application - HTTPS

- **HTTP**
 - Internet
 - MITM

- **HTTPS**
 - Internet

- Man-in-the-middle attack
 - middle = VPN, WiFi router, ...
 - attack = record / modify data
Application - Authentication

Other: zero-knowledge proof
Application - Cryptocurrency

- Block chain
 - decentralization -> P2P
 - Record storage and verification are spread across the network
Application(?) - Cryptoworm

![Image of Wana Decryptor 2.0]

What Happened to My Computer?
Your important files are encrypted. Many of your documents, photos, videos, databases and other files are no longer accessible because they have been encrypted. Maybe you are busy looking for a way to recover your files, but do not waste your time. Nobody can recover your files without our decryption service.

Can I Recover My Files?
Sure. We guarantee that you can recover all your files safely and easily. But you have not so much time.

- You can decrypt some of your files for free. Try now by clicking Decrypt.
- But if you want to decrypt all your files, you need to pay.
- You only have 3 days to submit the payment. After that the price will be doubled.
- Also, if you don’t pay in 7 days, you won’t be able to recover your files forever.

We will have free events for users who are so poor that they couldn’t pay in 6 months.

How Do I Pay?
Payment is accepted in Bitcoin only. For more information, click About Bitcoin.

- Please check the current price of Bitcoin and buy some bitcoins. For more information, click How to buy bitcoins.
- And send the correct amount to the address specified in this window.
- After your payment, click Check Payment. Best time to check: 9:00am - 11:00am GMT every day to Friday.

Send $300 worth of bitcoin to this address:

126YDFgwueZSNyMgw519p7AA8kj9SSMw

[Check Payment] [Decrypt]
Classical Cipher

● Shift cipher
 ○ Caesar cipher DEF -> ABC
 ○ ROT13 DEF -> QRS

● Substitution cipher
 ○ DEF -> SWF
 ○ DEF -> PAW

= 26!
Classical Cipher

- **Vigenere cipher**\((a + b \mod 26)\)
 - Plaintext: ATTACKATDAWN
 - Key: LEMONLEMONLE \((\text{LEMON})\)
 - Ciphertext: LXFOPVEFRNHR

- **Transposition cipher**
 - ABCDEF -> FEDCBA
 - ABCDEF -> ABC
 - ABCDEF -> FED
Hashing

- OI
 - e.g.: rolling hash
 - will be taught in String Algorithms
 - memory, time <-> a small probability of WA

- General
 - for verification
 - a (hopefully) injective function
 - without collision \((f(a) = f(b) \text{ but } a \neq b)\)
 - easy to compute the value
 - difficult to compute the inverse value
 - usually not “continuous”
 - “a and b are close” does not implies “\(f(a)\) and \(f(b)\) are close”
MD5

- A hashing function
- Software checksum
- No longer safe
- Other:
 - SHA-2
Hashing vs Encryption

- Hashing
 - one-way

- Encryption
 - two-way
 - reverse: decryption
Symmetric / Asymmetric Key Encryption

- **Symmetric Key Encryption**
 - same keys for encryption and decryption
 - e.g. xor
 - 123 xor 456 = 435
 - 435 xor 456 = 123
 - e.g. Advanced Encryption Standard (AES)

- **Asymmetric Key Encryption**
 - different keys for encryption and decryption
 - one public
 - one private
 - two keys are paired, i.e. they cannot be generated independently
RSA

- **Rivest–Shamir–Adleman**

 \[n = pq \text{ where } p \text{ and } q \text{ are primes} \]

- R.H.S. -> L.H.S. is fast (multiplication)
 - e.g. FFT

- L.H.S. -> R.H.S. is slow (factorization)
RSA

- Euler’s phi function ϕ
 - will be taught in Mathematics in OI (II)
 - $\phi(pq) = (p - 1)(q - 1)$
 - for fixed a, $\phi(n)$ is the length of a cycle of $a^m \mod n$ (not necessary minimum)

- Extended Euclidean algorithm
 - will be taught in Mathematics in OI (I)
 - find G.C.D.
 - find modular inverse

- Fast exponential algorithm
 - a.k.a. big mod algorithm
 - taught in Recursion, Divide and Conquer
RSA

- Preparation
 - find $n = pq$
 - find $de = 1 \pmod{\varphi(n)}$ with $\gcd(e, \varphi(n)) = 1$
 - make the public key (n, e) public
RSA

Encryption

- have plaintext M in mind
 - assume M to be an integer
- get public key (n, e)
- calculate $E = M^e \pmod{n}$
- send ciphertext E
RSA

● Decryption
 ○ receive ciphertext E
 ○ calculate $E^d = (M^e)^d = M \pmod{n}$
 ■ recall that
 ● $de = 1 \pmod{\phi(n)}$
 ● $\phi(n)$ is the length of a cycle of $a^n \pmod{n}$
 ○ retrieve plaintext M
RSA

Possible attack
- already know ciphertext E and public key (n, e)
- want to know plaintext M
 - $E^d = (M^e)^d = M \pmod{n}$
- require private key d
 - $de = 1 \pmod{\varphi(n)}$
- require $\varphi(n)$
 - $\varphi(n) = \varphi(pq) = (p - 1)(q - 1)$
- require p and q
- need factorization
Cryptography

Attack

- **Brute-force**
 - exhaustion (of keys)
 - look for meaningful outcomes
 - computer performance is increasing incredibly

- **Rainbow table**
 - store all $(x, f(x))$
 - query time ↓
 - memory required ↑
Attack

- **Frequency analysis**
 - many \times in ciphertext
 - \rightarrow
 - e is possibly replaced by \times during encryption

![Ciphertext Frequency Chart](chart.png)
Cryptography

Attack

● Quantum computing
 ○ Shor algorithm
 ■ polynomial time factorization algorithm
 ● (in terms of number of bits)
 ■ RSA is becoming unsafer
Cryptography

Relation withOI

- Two-step tasks
 - I1123 Parrots
 - M1743 Tree Recovery II
 - S141 Dividing the Cities
 - T144 Lost Sequence

- Huffman coding
 - N1521 荷馬史詩

- Purpose (data compression) sometimes differs from cryptography
IOI01 Double Crypt

\[\text{ciphertext} = E(\text{plaintext}, \text{key})\]
\[\text{plaintext} = E^{-1}(\text{ciphertext}, \text{key})\]

\(E\) and \(E^{-1}\) are given functions (can be called directly).
You may assume their time complexities are \(O(1)\).

Input: \(\text{plaintext}, E(E(\text{plaintext}, \text{key1}), \text{key2})\)

Output: \(\text{key1}, \text{key2}\)

All items are in 128-bit.

Furthermore, the last 108 bits of the keys are 0.
IOI01 Double Crypt

- Exhaustion of keys
 - 2^{40} combinations
 - $2^{40} = 1099511627776$
IOI01 Double Crypt

- Meet in the middle

\[x = \text{plaintext} \]
\[y = E(E(\text{plaintext}, \text{key1}), \text{key2}) \]
\[A_{\text{key1}} = E(x, \text{key1}) \]
\[B_{\text{key2}} = E^{-1}(y, \text{key2}) \]

- exhaust all A and B
- find the matched pair
CTF

- Capture The Flag

- Computer security competition
 - cryptography
 - reverse engineering
 - pwn
 - etc.

- Allowed to use online resources
For Fun

- Early April Fools?
- Answer: \([A-Z]^*\)
- Answers are somehow meaningful

1. SHOFJEYIWEEETRKJSQUIQHIK
2. 181324542
3. HTEOARRLTIAIZNCODANVL