
S184 Bogo Translate

Author: Alex Tung
Speaker: Steven Lau

January 27, 2018

Statistics

0 20 40 60 80

subtask 1

subtask 2

subtask 3

subtask 4

40

37

36

35

#contestants solved

Statistics

0 20 40 60 80

100

31

25

18

0

35

1

2

5

44

#contestants

Problem Statement
N = 3 entries in
translation database

WordA WordB

charlie charli
i watashiwa
am desu

M = 1 translation task

sentence: i am charlie
PattA: SVO
PattB: SOV
word-by-word: watashiwa desu charli
final answer: watashiwa charli desu

I 0 ≤ N ≤ 300, 1 ≤ M ≤ 10000

I total #words ≤ 10000

I 1 to 26 words per sentence, 1 to 15 characters per word
I Subtask 1: Every word contains only one character
I Subtask 2: PattA = PattB
I Subtask 3: Empty translation database
I Subtask 4: No additional constraints

Subtask 1: Every word contains only one character

With word being a character, we can store translation database as
a character array.

WordA WordB

d m
r f
m s

char WordA2WordB[128];
WordA2WordB['d'] = 'm';
WordA2WordB['r'] = 'f';
WordA2WordB['m'] = 's';

Time complexity: O(N)

Subtask 1: Every word contains only one character

Word-by-word translation - with a word being a character, we
don’t really need to break sentence into words.

char sentence[1000];
gets(sentence);
int len = strlen(sentence);
for (int i = 0; i < len; i += 2)
sentence[i] = WordA2WordB[sentence[i]];

Time complexity: O(|sentence|)

Subtask 1: Every word contains only one character
Pattern translation - build reverse lookup table

PattA PattB
SVO SOV

char PattA[16], PattB[16];
scanf("%s%s", PattA, PattB);
//strlen(PattA) == strlen(PattB) == (len + 1) / 2
int r[128];
for (int i = 0; i < len; i += 2)
r[PattA[i / 2]] = i / 2;

//r['S'] = 0;
//r['V'] = 1;
//r['O'] = 2;

Subtask 1: Every word contains only one character

Pattern translation - build reverse lookup table

PattA PattB
SVO SOV

//r['S'] = 0;
//r['V'] = 1;
//r['O'] = 2;
char answer[1000];
strcpy(answer, sentence);
for (int i = 0; i < len; i += 2)
answer[i] = sentence[r[PattB[i / 2]] * 2];

Time complexity: O(|sentence|)
Overall: O(N + M × |sentence|)

Subtask 2: PattA = PattB

Cannot store translation database as character array.

WordA WordB

charlie charli
i watashiwa
am desu

char WordA2WordB[128];
WordA2WordB['charlie'] = 'charli';
WordA2WordB['i'] = 'watashiwa';
WordA2WordB['am'] = 'desu';
//Compilation error. Why?

Subtask 2: PattA = PattB
Store translation database as string arrays

WordA WordB

charlie charli
i watashiwa
am desu

char WordA[300][16];
char WordB[300][16];
WordA[0] = "charlie";
WordB[0] = "charli";
WordA[1] = "i";
WordB[1] = "watashiwa";
WordA[2] = "am";
WordB[2] = "desu";

Time complexity: O(N × |word|)

Subtask 2: PattA = PattB

This time, we have to break a line into words.

char sentence[1000];
char word[26][16];
int words = 0;
char *p = strtok(sentence, " ");
while (p != NULL) {
strcpy(word[words], p);
words++;
p = strtok(NULL, " ");

}

Subtask 2: PattA = PattB

Word-by-word translation:

for (int i = 0; i < words; i++)
for (int j = 0; j < N; j++)
if (strcmp(word[i], WordA[j]) == 0) {

strcpy(word[i], WordB[j]);
break;

}

No need pattern translation

Time complexity: O(#words × N × |word|)

Overall: O(N × |word| + total #words × N × |word|)

Subtask 2: PattA = PattB

What if we make use of C++ Standard Template Library?

Subtask 2: PattA = PattB (C++ STL)

Store translation database as string map.

WordA WordB

charlie charli
i watashiwa
am desu

map<string, string> WordA2WordB;
WordA2WordB["charlie"] = "charli";
WordA2WordB["i"] = "watashiwa";
WordA2WordB["am"] = "desu";

Time complexity: O(|word| × N × logN)

Where does the logN come from? Attend Data Structures (II).

Subtask 2: PattA = PattB (C++ STL)
Use string stream to break sentence into words.

string sentence;
getline(cin, sentence);
stringstream ss(sentence);
string word[26];
int words = 0;
while (ss >> word[words])
words++;

Word-by-word translation:

for (int i = 0; i < words; i++)
if (WordA2WordB.count(word[i]))
word[i] = WordA2WordB[word[i]];

No need pattern translation
Time complexity: O(#words × |word| × logN)

Subtask 2: PattA = PattB (C++ STL)

Lesson learnt
I C++ is very powerful
I Attend training next week: Introduction to C++

Subtask 3: Empty translation database

Pattern translation - build reverse lookup table

PattA PattB
SVO SOV

//r['S'] = 0;
//r['V'] = 1;
//r['O'] = 2;
string ordered_word[26];
for (int i = 0; i < words; i++)
ordered_word[i] = word[r[PattB[i]]];

Time complexity: O(#words × |word|)

Subtask 4: No additional constraints

Just combine subtask 2 and subtask 3.

Questions?

