# HKOI Senior Q3 (Desktop Icons) Editorial 

Alex Tung<br>alex20030190@yahoo.com.hk

27 January 2018

## Table of Contents

(1) Task Description
(2) Statistics and Comments
(3) Solution

- Overview and simple cases
- Part 1: finding optimal value and wallpaper
- Part 2: finding a sequence of moves


## Task Description

- Given $N$ icons on a $R \times C$ desktop. Each icon is either black (B) or white (W) and occupies one slot.


## Task Description

- Given $N$ icons on a $R \times C$ desktop. Each icon is either black (B) or white (W) and occupies one slot.
- Each icon also has an importance value $v_{i}$.


## Task Description

- Given $N$ icons on a $R \times C$ desktop. Each icon is either black (B) or white (W) and occupies one slot.
- Each icon also has an importance value $v_{i}$.
- Given $K$ wallpapers. Each wallpaper is black-and-white, with $R \times C$ tiles.


## Task Description

- Given $N$ icons on a $R \times C$ desktop. Each icon is either black (B) or white (W) and occupies one slot.
- Each icon also has an importance value $v_{i}$.
- Given $K$ wallpapers. Each wallpaper is black-and-white, with $R \times C$ tiles.
- slot_color $=$ icon_color $\rightarrow$ icon hidden;
- slot_color $\neq$ icon_color $\rightarrow$ icon visible.


## Task Description

- Given $N$ icons on a $R \times C$ desktop. Each icon is either black (B) or white (W) and occupies one slot.
- Each icon also has an importance value $v_{i}$.
- Given $K$ wallpapers. Each wallpaper is black-and-white, with $R \times C$ tiles.
- slot_color $=$ icon_color $\rightarrow$ icon hidden;
- slot_color $\neq$ icon_color $\rightarrow$ icon visible.
- Your task: to maximize the sum of importance values of visible icons.


## Task Description

- Given $N$ icons on a $R \times C$ desktop. Each icon is either black (B) or white (W) and occupies one slot.
- Each icon also has an importance value $v_{i}$.
- Given $K$ wallpapers. Each wallpaper is black-and-white, with $R \times C$ tiles.
- slot_color $=$ icon_color $\rightarrow$ icon hidden;
- slot_color $\neq$ icon_color $\rightarrow$ icon visible.
- Your task: to maximize the sum of importance values of visible icons.
- You may choose a wallpaper and move the icons around.


## Task Description

- Given $N$ icons on a $R \times C$ desktop. Each icon is either black (B) or white (W) and occupies one slot.
- Each icon also has an importance value $v_{i}$.
- Given $K$ wallpapers. Each wallpaper is black-and-white, with $R \times C$ tiles.
- slot_color $=$ icon_color $\rightarrow$ icon hidden;
- slot_color $\neq$ icon_color $\rightarrow$ icon visible.
- Your task: to maximize the sum of importance values of visible icons.
- You may choose a wallpaper and move the icons around.
- Perform the following at most 6400 times: choose an icon and move it to an empty slot.


## Sample IO

## Sample Input 1

122
11 W 10
1
WW WW

Sample Input 2
122
11 W 10
2
WW
WW
WW
BW

## Sample Output 1

## 010

## Sample Output 2

1021
1121

## Sample IO

Sample Input 3
322
111 B 10
12 W 10
22 B 10
1
BW
WB

## Sample Output 3 <br> 3013 <br> 1121 <br> 1211 <br> 2212

## Sample Output 3b

3010

## Constraints

For all cases:
$1 \leq N \leq R \times C$
$1 \leq R, C \leq 80$
$0 \leq v_{i} \leq 10^{5}$
$1 \leq K \leq 100$
Points Constraints
$112 \quad R, C \leq 40$
$K=1$
All wallpaper tiles are of the same color
$215 \quad R, C \leq 40$
$K=1$
$316 \quad R, C \leq 40$
$N=R \times C$
4
$21 \quad R, C \leq 40$
$v_{i}=1$
$512 \quad R, C \leq 40$
624 No additional constraints

- Correct sum and sequence of (at most 6400) moves: 100\%
- Correct sum: $40 \%$


## Statistics

Attempts: 48
Mean: 21.916
Stddev: 22.272
Top scores: 100 (dbsgame, 1:27), 69.4 (dbscat), 56.8 (6 contestants) Score distribution:


## Comments

- One of the hardest tasks in HKOI Senior


## Comments

- One of the hardest tasks in HKOI Senior
- Algorithmically simple, but very hard to code...


## Comments

- One of the hardest tasks in HKOI Senior
- Algorithmically simple, but very hard to code...
- Risky to attempt full solution in the beginning


## Subtask 1

Subtask 1 (12 points): $R, C \leq 40, K=1$, tiles of same color

## Subtask 1

Subtask 1 (12 points): $R, C \leq 40, K=1$, tiles of same color - No need to move icons.

## Subtask 1

Subtask 1 (12 points): $R, C \leq 40, K=1$, tiles of same color

- No need to move icons.
- Just sum the values of all icons, whose color is different from that of the tiles.


## Subtask 3

## Subtask 3 (16 points): $R, C \leq 40, N=R \times C$

## Subtask 3

Subtask 3 (16 points): $R, C \leq 40, N=R \times C$

- Cannot move icons.


## Subtask 3

Subtask 3 (16 points): $R, C \leq 40, N=R \times C$

- Cannot move icons.
- For each wallpaper, it is straight-forward to calculate the sum of values of visible icons.


## Subtasks 2 and 4

Subtask 2 (15 points): $R, C \leq 40, K=1$
Subtask 4 (21 points): $R, C \leq 40, v_{i}=1$

## Subtasks 2 and 4

Subtask 2 (15 points): $R, C \leq 40, K=1$
Subtask 4 (21 points): $R, C \leq 40, v_{i}=1$

- Solving any of these two subtasks is not much easier than solving subtask $5(R, C \leq 40)$... It's just easier to code.


## Subtasks 5 and 6

$$
\begin{aligned}
& \text { Subtask } 5(12 \text { points }): R, C \leq 40 \\
& \text { Subtask } 6(24 \text { points }): \text { No additional constraints }(R, C \leq 80)
\end{aligned}
$$

## Subtasks 5 and 6

## Subtask 5 (12 points): $R, C \leq 40$

Subtask 6 ( 24 points): No additional constraints ( $R, C \leq 80$ )

- There are two parts to the solution.


## Subtasks 5 and 6

## Subtask 5 (12 points): $R, C \leq 40$

Subtask 6 (24 points): No additional constraints ( $R, C \leq 80$ )

- There are two parts to the solution.
- Part 1: to calculate the optimal value and find the wallpaper to be used.


## Subtasks 5 and 6

Subtask 5 (12 points): $R, C \leq 40$
Subtask 6 ( 24 points): No additional constraints $(R, C \leq 80)$

- There are two parts to the solution.
- Part 1: to calculate the optimal value and find the wallpaper to be used.
- Part 2: to find a sequence of moves to achieve the optimal value.


## Subtasks 5 and 6

Subtask 5 (12 points): $R, C \leq 40$
Subtask 6 ( 24 points): No additional constraints $(R, C \leq 80)$

- There are two parts to the solution.
- Part 1: to calculate the optimal value and find the wallpaper to be used.
- Part 2: to find a sequence of moves to achieve the optimal value.
- The intended solutions for subtasks 5 and 6 differ only in part 2.


## Part 1: finding optimal value and wallpaper

Assumption<br>Assume that $N<R \times C$.

## Part 1: finding optimal value and wallpaper

## Assumption <br> Assume that $N<R \times C$.

- For a wallpaper, we only need to care about the number of black (and white) tiles.


## Part 1: finding optimal value and wallpaper

## Assumption

Assume that $N<R \times C$.

- For a wallpaper, we only need to care about the number of black (and white) tiles.
- Suppose that a given wallpaper has $B$ black tiles and $W$ white tiles, and we have $b$ black icons and $w$ white icons.


## Part 1: finding optimal value and wallpaper

## Assumption

Assume that $N<R \times C$.

- For a wallpaper, we only need to care about the number of black (and white) tiles.
- Suppose that a given wallpaper has $B$ black tiles and $W$ white tiles, and we have $b$ black icons and $w$ white icons.
- Clearly we should choose the $\min (b, W)$ black icons and the $\min (w, B)$ white icons of the highest values.


## Part 1: finding optimal value and wallpaper

## Assumption

Assume that $N<R \times C$.

- For a wallpaper, we only need to care about the number of black (and white) tiles.
- Suppose that a given wallpaper has $B$ black tiles and $W$ white tiles, and we have $b$ black icons and $w$ white icons.
- Clearly we should choose the $\min (b, W)$ black icons and the $\min (w, B)$ white icons of the highest values.
- Call these chosen icons good and other icons bad.


## Part 2: finding a sequence of moves

## Part 2: finding a sequence of moves

- Now we have chosen a wallpaper and know which icons are good.


## Part 2: finding a sequence of moves

- Now we have chosen a wallpaper and know which icons are good.
- We want to make all good icons visible.


## Algorithm 1: Icon Swapping

Each time, we "swap" two icons using three moves.

## Algorithm 1: Icon Swapping

Each time, we "swap" two icons using three moves.

## Pseudo-code

(1) while there is a hidden good icon

Set $G O O D:=$ the hidden good icon
Find EMPTY:= an empty slot
Find TARGET := a tile of opposite color to GOOD and not occupied by a visible good icon

Perform GOOD $\rightarrow$ EMPTY
Perform TARGET $\rightarrow$ GOOD
Perform EMPTY $\rightarrow$ TARGET end

## Algorithm 1: Icon Swapping

Each time, we "swap" two icons using three moves.

## Pseudo-code

(1) while there is a hidden good icon

Set $G O O D:=$ the hidden good icon
Find EMPTY:= an empty slot
Find TARGET := a tile of opposite color to GOOD and not occupied by a visible good icon

Perform GOOD $\rightarrow$ EMPTY
Perform TARGET $\rightarrow$ GOOD
Perform EMPTY $\rightarrow$ TARGET end

The number of moves is at most $3 N$, which solves subtasks $1-5$.

## Algorithm 1: Icon Swapping

Each time, we "swap" two icons using three moves.

## Pseudo-code

(1) while there is a hidden good icon

Set $G O O D:=$ the hidden good icon
Find EMPTY:= an empty slot
Find TARGET := a tile of opposite color to GOOD and not occupied by a visible good icon

Perform GOOD $\rightarrow$ EMPTY
Perform TARGET $\rightarrow$ GOOD
Perform EMPTY $\rightarrow$ TARGET end

The number of moves is at most $3 N$, which solves subtasks $1-5$. Time complexity: $O(N R C)$.

## Algorithm 2: Greedily Fix Icons

- For ease of analysis, for each icon (good or bad) we fix a target colour.


## Algorithm 2: Greedily Fix Icons

- For ease of analysis, for each icon (good or bad) we fix a target colour.
- At the end, all icons should be placed in a slot having the target colour.


## Algorithm 2: Greedily Fix Icons

- For ease of analysis, for each icon (good or bad) we fix a target colour.
- At the end, all icons should be placed in a slot having the target colour.


## Pseudo-code

(1) while there is a misplaced icon that can be fixed

Let $I C O N:=$ the misplaced icon
Let TARGET := an empty slot having the target colour
Perform ICON $\rightarrow$ TARGET
end
Each move, we fix exactly one misplaced icon, so the number of moves is at most $N$. Accepted!

## Algorithm 2: Greedily Fix Icons

- For ease of analysis, for each icon (good or bad) we fix a target colour.
- At the end, all icons should be placed in a slot having the target colour.


## Pseudo-code

(1) while there is a misplaced icon that can be fixed

Let $I C O N:=$ the misplaced icon
Let TARGET := an empty slot having the target colour
Perform ICON $\rightarrow$ TARGET
end
Each move, we fix exactly one misplaced icon, so the number of moves is at most $N$. Accepted!
Time complexity: $O(N R C)$.

The End

- Questions?

