HKOI Senior Q2 (Tournament)
Editorial

Alex Tung
alex20030190@yahoo.com.hk

27 January 2018
1 Task Description

2 Statistics and Comments

3 Solution
 • The special cases
 • Step by step
 • The full solution
Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).

 If (goals scored) > (goals conceded), get W points.

 If (goals scored) = (goals conceded), get D points.

 If (goals scored) < (goals conceded), get 0 points.

For each team, you know its total #points, total #goals scored, and total #goals conceded.

Output a list of match results, which matches the given info.
Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).
- In each match, two teams play against each other. Each team scores and concedes goals.
Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).
- In each match, two teams play against each other. Each team scores and concedes goals.
- If \((\text{goals scored}) > (\text{goals conceded})\), get \(W\) points.
- If \((\text{goals scored}) = (\text{goals conceded})\), get \(D\) points.
- If \((\text{goals scored}) < (\text{goals conceded})\), get 0 points.
Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).
- In each match, two teams play against each other. Each team scores and concedes goals.
- If (goals scored) > (goals conceded), get W points.
- If (goals scored) = (goals conceded), get D points.
- If (goals scored) < (goals conceded), get 0 points.
- For each team, you know its total #points, total #goals scored, and total #goals conceded.
Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).
- In each match, two teams play against each other. Each team scores and concedes goals.
- If \((\text{goals scored}) > (\text{goals conceded})\), get \(W\) points.
- If \((\text{goals scored}) = (\text{goals conceded})\), get \(D\) points.
- If \((\text{goals scored}) < (\text{goals conceded})\), get 0 points.
- For each team, you know its total \#points, total \#goals scored, and total \#goals conceded.
- Output a list of match results, which matches the given info.
Sample IO

<table>
<thead>
<tr>
<th>Sample Input 1</th>
<th>Sample Output 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1</td>
<td>Alpha 1 - 0 Beta</td>
</tr>
<tr>
<td>6 2 0</td>
<td>Alpha 1 - 0 Gamma</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Beta 0 - 0 Gamma</td>
</tr>
<tr>
<td>1 0 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Input 2</th>
<th>Sample Output 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1</td>
<td>Impossible</td>
</tr>
<tr>
<td>6 3 0</td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td></td>
</tr>
</tbody>
</table>
Constraints

For all cases:

\[0 \leq D \leq W \leq 5 \]
\[0 \leq P_A, P_B, P_G \leq 2W \]
\[0 \leq S_A, S_B, S_G, C_A, C_B, C_G \leq 10^9 \]

<table>
<thead>
<tr>
<th>Points</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S_A = S_B = S_G = C_A = C_B = C_G = 0)</td>
</tr>
</tbody>
</table>
| 2 | \(W > 2D \)
 \(P_A = P_B = P_G = 2D \)
 \(S_A = C_A \)
 \(S_B = C_B \)
 \(S_G = C_G \) |
| 3 | \(0 \leq S_A, S_B, S_G, C_A, C_B, C_G \leq 20 \) |
| 4 | \(0 \leq S_A, S_B, S_G, C_A, C_B, C_G \leq 10^6 \) |
| 5 | \(W = 0 \) |
| 6 | No additional constraints |
Attempts: 71
Mean: 18.028
Stddev: 22.72
Top scores: 100 (hkoi201516-28, 1:22), 75 (s14318, hkoi201516-27), 65 (4 contestants)
Score distribution:
An ad-hoc, hard problem.
Comments

- An ad-hoc, hard problem.
- Requires (mathematical?) insight + good coding skills.
An ad-hoc, hard problem.
Requires (mathematical?) insight + good coding skills.
I am glad that Max = 100 :)

Alex Tung
S182 Editorial
27 Jan 18
• An ad-hoc, hard problem.
• Requires (mathematical?) insight + good coding skills.
• I am glad that Max = 100 :)
• It has really easy subtasks.
Subtask 1 (7 points): No goals scored, no goals conceded
Subtask 1 (7 points): No goals scored, no goals conceded

- Each match should end in a draw.

Suffices to check whether \(P_A = P_B = P_G = 2 \times D \).

If true, just output

Alpha 0 - 0 Beta
Beta 0 - 0 Gamma
Gamma 0 - 0 Alpha

Otherwise, output Impossible.
Subtask 1

Subtask 1 (7 points): No goals scored, no goals conceded

- Each match should end in a draw.
- Suffices to check whether \(P_A = P_B = P_G = 2 \times D \).

If true, just output

\[\text{Alpha 0 - 0 Beta} \]
\[\text{Beta 0 - 0 Gamma} \]
\[\text{Gamma 0 - 0 Alpha} \]

Otherwise, output

\[\text{Impossible} \]
Subtask 1

Subtask 1 (7 points): No goals scored, no goals conceded

- Each match should end in a draw.
- Suffices to check whether $P_A = P_B = P_G = 2 \times D$.
- If true, just output

 Alpha 0 – 0 Beta
 Beta 0 – 0 Gamma
 Gamma 0 – 0 Alpha

Otherwise, output Impossible.
Subtask 2 (13 points):

\[W > 2D, \ P_A = P_B = P_G = 2D, \ S_A = C_A, \ S_B = C_B, \ S_G = C_G \]
Subtask 2 (13 points):
\[W > 2D, P_A = P_B = P_G = 2D, S_A = C_A, S_B = C_B, S_G = C_G \]

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so \(P_A \geq W > 2D = P_A \), contradiction.
Subtask 2 (13 points):
\[W > 2D, P_A = P_B = P_G = 2D, S_A = C_A, S_B = C_B, S_G = C_G \]

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so \(P_A \geq W > 2D = P_A \), contradiction.

- Let \(AB \) be \#goals scored by team Alpha in the Alpha vs. Beta match.
Subtask 2 (13 points):
\[W > 2D, P_A = P_B = P_G = 2D, S_A = C_A, S_B = C_B, S_G = C_G \]

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so \(P_A \geq W > 2D = P_A \), contradiction.
- Let \(AB \) be \#goals scored by team Alpha in the Alpha vs. Beta match.
- Let \(BA \) be \#goals scored by team Beta in the Alpha vs. Beta match.
Subtask 2 (13 points):

$W > 2D, P_A = P_B = P_G = 2D, S_A = C_A, S_B = C_B, S_G = C_G$

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so $P_A \geq W > 2D = P_A$, contradiction.

- Let AB be $\#$goals scored by team Alpha in the Alpha vs. Beta match.
- Let BA be $\#$goals scored by team Beta in the Alpha vs. Beta match.
- Similar for AG, GA, BG, and GB.
Subtask 2 (13 points):
\(W > 2D, P_A = P_B = P_G = 2D, S_A = C_A, S_B = C_B, S_G = C_G \)

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so \(P_A \geq W > 2D = P_A \), contradiction.
- Let \(AB \) be \#goals scored by team Alpha in the Alpha vs. Beta match.
- Let \(BA \) be \#goals scored by team Beta in the Alpha vs. Beta match.
- Similar for \(AG, GA, BG, \) and \(GB \).
- For this subtask, \(AB = BA, AG = GA, BG = GB \).
Subtask 2 (13 points):
\[W > 2D, \quad P_A = P_B = P_G = 2D, \quad S_A = C_A, \quad S_B = C_B, \quad S_G = C_G \]

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so \(P_A \geq W > 2D = P_A \), contradiction.
- Let \(AB \) be \#goals scored by team Alpha in the Alpha vs. Beta match.
- Let \(BA \) be \#goals scored by team Beta in the Alpha vs. Beta match.
- Similar for \(AG, GA, BG, \) and \(GB \).
- For this subtask, \(AB = BA, \quad AG = GA, \quad BG = GB \).
- Then we are solving the following system of equations:

\[
\begin{align*}
AB + AG &= S_A \\
AB + BG &= S_B \\
AG + BG &= S_G
\end{align*}
\]
We are solving the following system of equations:

\[
\begin{align*}
AB + AG &= S_A \\
AB + BG &= S_B \\
AG + BG &= S_G
\end{align*}
\]
We are solving the following system of equations:

\[
\begin{align*}
AB + AG &= S_A \\
AB + BG &= S_B \\
AG + BG &= S_G
\end{align*}
\]

Add up the equations to get \(2 \times (AB + AG + BG) = S_A + S_B + S_G\).
Subtask 2

- We are solving the following system of equations:

\[
\begin{align*}
AB + AG &= S_A \\
AB + BG &= S_B \\
AG + BG &= S_G
\end{align*}
\]

- Add up the equations to get \(2 \times (AB + AG + BG) = S_A + S_B + S_G\).
- Divide by two, then we know the value of \(AB + AG + BG\).
We are solving the following system of equations:

\[
\begin{cases}
AB + AG &= S_A \\
AB + BG &= S_B \\
AG + BG &= S_G \\
\end{cases}
\]

Add up the equations to get \(2 \times (AB + AG + BG) = S_A + S_B + S_G\). Divide by two, then we know the value of \(AB + AG + BG\).

If the value is not integer, output Impossible.
We are solving the following system of equations:

\[
\begin{aligned}
AB + AG &= S_A \\
AB + BG &= S_B \\
AG + BG &= S_G
\end{aligned}
\]

Add up the equations to get \(2 \times (AB + AG + BG) = S_A + S_B + S_G\).

Divide by two, then we know the value of \(AB + AG + BG\).

If the value is not integer, output \text{Impossible}.

Otherwise, subtract the equations above to get \(AB, AG, BG\). (Check that they are non-negative!)
Subtask 3 (20 points): $0 \leq S_A, S_B, S_G, C_A, C_B, C_G \leq 20$
Subtask 3 (20 points): $0 \leq S_A, S_B, S_G, C_A, C_B, C_G \leq 20$

- Just write six layers of for-loops to exhaust all match results :)
Subtask 3 (20 points): $0 \leq S_A, S_B, S_G, C_A, C_B, C_G \leq 20$

- Just write six layers of for-loops to exhaust all match results :)
- There are at most 21^6 combinations to check.
Subtask 3 (20 points): $0 \leq S_A, S_B, S_G, C_A, C_B, C_G \leq 20$

- Just write six layers of for-loops to exhaust all match results :)
- There are at most 21^6 combinations to check.
- Time complexity: $O(R^6)$, where R is the input range.
Claim
If we fix any of the six scores, we may deduce the remaining five.

Proof
This is because we are solving the following system of equations:

\[
\begin{align*}
AB + AG &= S_A \\
AG + BG &= C_G \\
BG + BA &= S_B \\
BA + GA &= C_A \\
GA + GB &= S_G \\
GB + AB &= C_B
\end{align*}
\]
Subtask 4

Subtask 4 (25 points): $0 \leq S_A, S_B, S_G, C_A, C_B, C_G \leq 10^6$

Claim

If we fix any of the six scores, we may deduce the remaining five.

Proof

This is because we are solving the following system of equations:

\[
\begin{align*}
AB + AG &= S_A \\
AG + BG &= C_G \\
BG + BA &= S_B \\
BA + GA &= C_A \\
GA + GB &= S_G \\
GB + AB &= C_B
\end{align*}
\]

- This improves the algorithm to $O(R)$.
Subtask 5 (10 points): $W = 0$
Subtask 5 (10 points): $W = 0$

- For this subtask, we don’t need to care about points.

\[
\begin{align*}
AG &= SA - AB = SA - x \\
BG &= CG - AG = CG - (SA - x) \\
BA &= SB - BG = SB - (CG - (SA - x)) \\
GA &= CA - BA = CA - (SB - (CG - (SA - x))) \\
GB &= SG - GA = SG - (CA - (SB - (CG - (SA - x))))
\end{align*}
\]

Of course we should have $SA + SB + SG = CA + CB + CG$.

Then, $AB = x$ is valid iff AG, BG, BA, GB, GA are non-negative.

The above equations give the valid range of x.
Subtask 5

Subtask 5 (10 points): $W = 0$

- For this subtask, we don’t need to care about points.
- Say we try $AB = x$. Then, we have

\[
\begin{align*}
AG &= S_A - AB = S_A - x \\
BG &= C_G - AG = C_G - S_A + x \\
BA &= S_B - BG = S_B - C_G + S_A - x \\
GA &= C_A - BA = C_A - S_B + C_G - S_A + x \\
GB &= S_G - GA = S_G - C_A + S_B - C_G + S_A - x
\end{align*}
\]
Subtask 5

Subtask 5 (10 points): $W = 0$

- For this subtask, we don’t need to care about points.
- Say we try $AB = x$. Then, we have

$$\begin{align*}
AG &= S_A - AB = S_A - x \\
BG &= C_G - AG = C_G - S_A + x \\
BA &= S_B - BG = S_B - C_G + S_A - x \\
GA &= C_A - BA = C_A - S_B + C_G - S_A + x \\
GB &= S_G - GA = S_G - C_A + S_B - C_G + S_A - x
\end{align*}$$

- Of course we should have $S_A + S_B + S_G = C_A + C_B + C_G$.
Subtask 5

Subtask 5 (10 points): $W = 0$

- For this subtask, we don’t need to care about points.
- Say we try $AB = x$. Then, we have

\[
\begin{align*}
AG &= S_A - AB = S_A - x \\
BG &= C_G - AG = C_G - S_A + x \\
BA &= S_B - BG = S_B - C_G + S_A - x \\
GA &= C_A - BA = C_A - S_B + C_G - S_A + x \\
GB &= S_G - GA = S_G - C_A + S_B - C_G + S_A - x
\end{align*}
\]

- Of course we should have $S_A + S_B + S_G = C_A + C_B + C_G$.
- Then, $AB = x$ is valid iff AG, BG, BA, GB, GA are non-negative.
Subtask 5 (10 points): \(W = 0 \)

- For this subtask, we don’t need to care about points.
- Say we try \(AB = x \). Then, we have

\[
\begin{align*}
AG &= S_A - AB &= S_A - x \\
BG &= C_G - AG &= C_G - S_A + x \\
BA &= S_B - BG &= S_B - C_G + S_A - x \\
GA &= C_A - BA &= C_A - S_B + C_G - S_A + x \\
GB &= S_G - GA &= S_G - C_A + S_B - C_G + S_A - x
\end{align*}
\]

- Of course we should have \(S_A + S_B + S_G = C_A + C_B + C_G \).
- Then, \(AB = x \) is valid iff \(AG, BG, BA, GB, GA \) are non-negative.
- The above equations give the valid range of \(x \).
Subtask 6 (25 points): No additional constraints
Subtask 6 (25 points): No additional constraints

- Again, let $AB = x$.

Again, let $AB = x$. We know how to express other variables in terms of x and constants. Now, exhaust the match results. Just win/draw/lose, no scores. So there are $3^3 = 27$ possibilities. Check if points (P_A, P_B, P_G) match, then try to find a valid x. This can be done, again, by solving inequalities (and equalities).
Subtask 6 (25 points): No additional constraints

- Again, let $AB = x$.
- We know how to express other variables in terms of x and constants.
Subtask 6 (25 points): No additional constraints

- Again, let $AB = x$.
- We know how to express other variables in terms of x and constants.
- Now, exhaust the match results. Just win/draw/lose, no scores.
Subtask 6

Subtask 6 (25 points): No additional constraints

- Again, let $AB = x$.
- We know how to express other variables in terms of x and constants.
- Now, exhaust the match results. Just win/draw/lose, no scores.
- So there are $3^3 = 27$ possibilities.
Subtask 6 (25 points): No additional constraints

- Again, let $AB = x$.
- We know how to express other variables in terms of x and constants.
- Now, exhaust the match results. Just win/draw/lose, no scores.
- So there are $3^3 = 27$ possibilities.
- Check if points (P_A, P_B, and P_G) match, then try to find a valid x.
Subtask 6 (25 points): No additional constraints

- Again, let $AB = x$.
- We know how to express other variables in terms of x and constants.
- Now, exhaust the match results. Just win/draw/lose, no scores.
- So there are $3^3 = 27$ possibilities.
- Check if points $(P_A, P_B, \text{and } P_G)$ match, then try to find a valid x.
- This can be done, again, by solving inequalities (and equalities).
Recall:

\[
\begin{align*}
AG &= S_A - x \\
BG &= C_G - S_A + x \\
BA &= S_B - C_G + S_A - x \\
GA &= C_A - S_B + C_G - S_A + x \\
GB &= S_G - C_A + S_B - C_G + S_A - x
\end{align*}
\]

For example, requiring Alpha defeats Beta means that \(AB > BA \), or \(x > S_B - C_G + S_A - x \).

Requiring Beta draws against Gamma means that \(BG = GB \), or \(C_G - S_A + x = S_G - C_A + S_B - C_G + S_A - x \).

These constraints give the valid range of \(x \).

Alternatively, one may use binary search to find one possible \(x \).
Recall:

\[
\begin{align*}
AG &= S_A - x \\
BG &= C_G - S_A + x \\
BA &= S_B - C_G + S_A - x \\
GA &= C_A - S_B + C_G - S_A + x \\
GB &= S_G - C_A + S_B - C_G + S_A - x \\
\end{align*}
\]

For example, requiring Alpha defeats Beta means that \(AB > BA \), or \(x > S_B - C_G + S_A - x \).
Recall:

\[
\begin{align*}
AG &= S_A - x \\
BG &= C_G - S_A + x \\
BA &= S_B - C_G + S_A - x \\
GA &= C_A - S_B + C_G - S_A + x \\
GB &= S_G - C_A + S_B - C_G + S_A - x
\end{align*}
\]

For example, requiring Alpha defeats Beta means that \(AB > BA \), or \(x > S_B - C_G + S_A - x \).

Requiring Beta draws against Gamma means that \(BG = GB \), or \(C_G - S_A + x = S_G - C_A + S_B - C_G + S_A - x \).
Recall:

\[
\begin{align*}
AG &= S_A - x \\
BG &= C_G - S_A + x \\
BA &= S_B - C_G + S_A - x \\
GA &= C_A - S_B + C_G - S_A + x \\
GB &= S_G - C_A + S_B - C_G + S_A - x
\end{align*}
\]

For example, requiring Alpha defeats Beta means that \(AB > BA \), or \(x > S_B - C_G + S_A - x \).

Requiring Beta draws against Gamma means that \(BG = GB \), or \(C_G - S_A + x = S_G - C_A + S_B - C_G + S_A - x \).

These constraints give the valid range of \(x \).
Recall:

\[
\begin{align*}
AG &= S_A - x \\
BG &= C_G - S_A + x \\
BA &= S_B - C_G + S_A - x \\
GA &= C_A - S_B + C_G - S_A + x \\
GB &= S_G - C_A + S_B - C_G + S_A - x
\end{align*}
\]

For example, requiring Alpha defeats Beta means that \(AB > BA \), or \(x > S_B - C_G + S_A - x \).

Requiring Beta draws against Gamma means that \(BG = GB \), or \(C_G - S_A + x = S_G - C_A + S_B - C_G + S_A - x \).

These constraints give the valid range of \(x \).

Alternatively, one may use binary search to find one possible \(x \).
Subtask 6

- But a simpler solution exists!
But a simpler solution exists!

Exhausting the match results (win/draw/lose) means that we require $AB - BA$, $BG - GB$, $GA - AG$ to be positive/zero/negative.
But a simpler solution exists!

Exhausting the match results (win/draw/lose) means that we require \(AB - BA, BG - GB, GA - AG \) to be positive/zero/negative.

\[
\begin{aligned}
AB - BA &= 2x - f(A, B) \\
BG - GB &= 2x - f(B, G) \\
GA - AG &= 2x - f(G, A)
\end{aligned}
\]
But a simpler solution exists!

Exhausting the match results (win/draw/lose) means that we require \(AB - BA, \ BG - GB, \ GA - AG \) to be positive/zero/negative.

\[
\begin{cases}
AB - BA &= 2x - f(A, B) \\
BG - GB &= 2x - f(B, G) \\
GA - AG &= 2x - f(G, A)
\end{cases}
\]

\(f(A, B), f(B, G), f(G, A) \) are constants.
But a simpler solution exists!

Exhausting the match results (win/draw/lose) means that we require $AB - BA$, $BG - GB$, $GA - AG$ to be positive/zero/negative.

\[
\begin{align*}
AB - BA &= 2x - f(A, B) \\
BG - GB &= 2x - f(B, G) \\
GA - AG &= 2x - f(G, A)
\end{align*}
\]

$f(A, B)$, $f(B, G)$, $f(G, A)$ are constants.

They may be computed using the equations in the previous slide.
But a simpler solution exists!

Exhausting the match results (win/draw/lose) means that we require $AB - BA$, $BG - GB$, $GA - AG$ to be positive/zero/negative.

\[
\begin{align*}
AB - BA &= 2x - f(A, B) \\
BG - GB &= 2x - f(B, G) \\
GA - AG &= 2x - f(G, A)
\end{align*}
\]

$f(A, B)$, $f(B, G)$, $f(G, A)$ are constants.

They may be computed using the equations in the previous slide.

Therefore, it suffices to check all x “near” $\frac{f(A, B)}{2}$, $\frac{f(B, G)}{2}$, or $\frac{f(G, A)}{2}$.
Happy Ending? Not Yet!

- Checking these values of x is **not enough**!

<table>
<thead>
<tr>
<th>Date</th>
<th>Username</th>
<th>Session</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-12-25</td>
<td>kctung - RB教教徒</td>
<td>S182 - Tournament</td>
<td>95.821</td>
</tr>
</tbody>
</table>
Happy Ending? Not Yet!

- Checking these values of x is **not enough**!

- One also needs to check all x such that either of AB, BA, AG, GA, BG, GB is zero.
Happy Ending? Not Yet!

- Checking these values of x is **not enough**!

 One also needs to check all x such that either of AB, BA, AG, GA, BG, GB is zero.

 Like this:

```
(test((gs[1] - gc[2] + gs[0]) / 2);
test((gs[0] - gc[2] + gs[1]) / 2);
```
Questions?