HKOI Senior Q2 (Tournament) Editorial

Alex Tung
alex20030190@yahoo.com.hk

27 January 2018

Table of Contents

(1) Task Description
(2) Statistics and Comments
(3) Solution

- The special cases
- Step by step
- The full solution

Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).

Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).
- In each match, two teams play against each other. Each team scores and concedes goals.

Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).
- In each match, two teams play against each other. Each team scores and concedes goals.
- If (goals scored) $>$ (goals conceded), get W points.
- If (goals scored) $=$ (goals conceded), get D points.
- If (goals scored) $<$ (goals conceded), get 0 points.

Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).
- In each match, two teams play against each other. Each team scores and concedes goals.
- If (goals scored) $>$ (goals conceded), get W points.
- If (goals scored) $=$ (goals conceded), get D points.
- If (goals scored) $<$ (goals conceded), get 0 points.
- For each team, you know its total \#points, total \#goals scored, and total \#goals conceded.

Task Description

- Single round-robin tournament with three teams (Alpha, Beta, Gamma).
- In each match, two teams play against each other. Each team scores and concedes goals.
- If (goals scored) $>$ (goals conceded), get W points.
- If (goals scored) $=$ (goals conceded), get D points.
- If (goals scored) $<$ (goals conceded), get 0 points.
- For each team, you know its total \#points, total \#goals scored, and total \#goals conceded.
- Output a list of match results, which matches the given info.

Sample IO

Sample Input 1
 31
 620
 101
 101

Sample Input 2

31
630
101
101

Constraints

$$
\begin{aligned}
& \text { For all cases: } \\
& 0 \leq D \leq W \leq 5 \\
& 0 \leq P_{A}, P_{B}, P_{G} \leq 2 W \\
& 0 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 10^{9} \\
& 17 S_{A}=S_{B}=S_{G}=C_{A}=C_{B}=C_{G}=0 \\
& 2 \\
& 13 \quad W>2 D \\
& P_{A}=P_{B}=P_{G}=2 D \\
& S_{A}=C_{A} \\
& S_{B}=C_{B} \\
& S_{G}=C_{G} \\
& 3200 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 20 \\
& 425 \\
& 0 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 10^{6} \\
& 5 \\
& 10 W=0 \\
& 6 \\
& 25 \text { No additional constraints }
\end{aligned}
$$

Statistics

Attempts: 71
Mean: 18.028
Stddev: 22.72
Top scores: 100 (hkoi201516-28, 1:22), 75 (s14318, hkoi201516-27), 65 (4 contestants)
Score distribution:

Comments

- An ad-hoc, hard problem.

Comments

- An ad-hoc, hard problem.
- Requires (mathematical?) insight + good coding skills.

Comments

- An ad-hoc, hard problem.
- Requires (mathematical?) insight + good coding skills.
- I am glad that Max = 100 :)

Comments

- An ad-hoc, hard problem.
- Requires (mathematical?) insight + good coding skills.
- I am glad that Max = 100 :)
- It has really easy subtasks.

Subtask 1

Subtask 1 (7 points): No goals scored, no goals conceded

Subtask 1

Subtask 1 (7 points): No goals scored, no goals conceded

- Each match should end in a draw.

Subtask 1

Subtask 1 (7 points): No goals scored, no goals conceded

- Each match should end in a draw.
- Suffices to check whether $P_{A}=P_{B}=P_{G}=2 \times D$.

Subtask 1

Subtask 1 (7 points): No goals scored, no goals conceded

- Each match should end in a draw.
- Suffices to check whether $P_{A}=P_{B}=P_{G}=2 \times D$.
- If true, just output

Alpha 0 - 0 Beta
Beta 0 - 0 Gamma
Gamma 0-0 Alpha
Otherwise, output Impossible.

Subtask 2

Subtask 2 (13 points):

$W>2 D, P_{A}=P_{B}=P_{G}=2 D, S_{A}=C_{A}, S_{B}=C_{B}, S_{G}=C_{G}$

Subtask 2

Subtask 2 (13 points):
$W>2 D, P_{A}=P_{B}=P_{G}=2 D, S_{A}=C_{A}, S_{B}=C_{B}, S_{G}=C_{G}$

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so $P_{A} \geq W>2 D=P_{A}$, contradiction.

Subtask 2

Subtask 2 (13 points):
$W>2 D, P_{A}=P_{B}=P_{G}=2 D, S_{A}=C_{A}, S_{B}=C_{B}, S_{G}=C_{G}$

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so $P_{A} \geq W>2 D=P_{A}$, contradiction.
- Let $A B$ be \#goals scored by team Alpha in the Alpha vs. Beta match.

Subtask 2

Subtask 2 (13 points):
$W>2 D, P_{A}=P_{B}=P_{G}=2 D, S_{A}=C_{A}, S_{B}=C_{B}, S_{G}=C_{G}$

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so $P_{A} \geq W>2 D=P_{A}$, contradiction.
- Let $A B$ be \#goals scored by team Alpha in the Alpha vs. Beta match.
- Let $B A$ be \#goals scored by team Beta in the Alpha vs. Beta match.

Subtask 2

Subtask 2 (13 points):
$W>2 D, P_{A}=P_{B}=P_{G}=2 D, S_{A}=C_{A}, S_{B}=C_{B}, S_{G}=C_{G}$

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so $P_{A} \geq W>2 D=P_{A}$, contradiction.
- Let $A B$ be \#goals scored by team Alpha in the Alpha vs. Beta match.
- Let $B A$ be \#goals scored by team Beta in the Alpha vs. Beta match.
- Similar for $A G, G A, B G$, and $G B$.

Subtask 2

Subtask 2 (13 points):
$W>2 D, P_{A}=P_{B}=P_{G}=2 D, S_{A}=C_{A}, S_{B}=C_{B}, S_{G}=C_{G}$

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so $P_{A} \geq W>2 D=P_{A}$, contradiction.
- Let $A B$ be \#goals scored by team Alpha in the Alpha vs. Beta match.
- Let $B A$ be \#goals scored by team Beta in the Alpha vs. Beta match.
- Similar for $A G, G A, B G$, and $G B$.
- For this subtask, $A B=B A, A G=G A, B G=G B$.

Subtask 2

Subtask 2 (13 points):
$W>2 D, P_{A}=P_{B}=P_{G}=2 D, S_{A}=C_{A}, S_{B}=C_{B}, S_{G}=C_{G}$

- Looks terrible, but all it says is that (if a solution exists) all matches should be draws. Otherwise, some team (say Alpha) wins a match and so $P_{A} \geq W>2 D=P_{A}$, contradiction.
- Let $A B$ be \#goals scored by team Alpha in the Alpha vs. Beta match.
- Let $B A$ be \#goals scored by team Beta in the Alpha vs. Beta match.
- Similar for $A G, G A, B G$, and $G B$.
- For this subtask, $A B=B A, A G=G A, B G=G B$.
- Then we are solving the following system of equations:

$$
\left\{\begin{array}{l}
A B+A G=S_{A} \\
A B+B G=S_{B} \\
A G+B G=S_{G}
\end{array}\right.
$$

Subtask 2

- We are solving the following system of equations:

$$
\left\{\begin{array}{l}
A B+A G=S_{A} \\
A B+B G=S_{B} \\
A G+B G=S_{G}
\end{array}\right.
$$

Subtask 2

- We are solving the following system of equations:

$$
\left\{\begin{array}{l}
A B+A G=S_{A} \\
A B+B G=S_{B} \\
A G+B G=S_{G}
\end{array}\right.
$$

- Add up the equations to get $2 \times(A B+A G+B G)=S_{A}+S_{B}+S_{G}$.

Subtask 2

- We are solving the following system of equations:

$$
\left\{\begin{array}{l}
A B+A G=S_{A} \\
A B+B G=S_{B} \\
A G+B G=S_{G}
\end{array}\right.
$$

- Add up the equations to get $2 \times(A B+A G+B G)=S_{A}+S_{B}+S_{G}$.
- Divide by two, then we know the value of $A B+A G+B G$.

Subtask 2

- We are solving the following system of equations:

$$
\left\{\begin{array}{l}
A B+A G=S_{A} \\
A B+B G=S_{B} \\
A G+B G=S_{G}
\end{array}\right.
$$

- Add up the equations to get $2 \times(A B+A G+B G)=S_{A}+S_{B}+S_{G}$.
- Divide by two, then we know the value of $A B+A G+B G$.
- If the value is not integer, output Impossible.

Subtask 2

- We are solving the following system of equations:

$$
\left\{\begin{array}{l}
A B+A G=S_{A} \\
A B+B G=S_{B} \\
A G+B G=S_{G}
\end{array}\right.
$$

- Add up the equations to get $2 \times(A B+A G+B G)=S_{A}+S_{B}+S_{G}$.
- Divide by two, then we know the value of $A B+A G+B G$.
- If the value is not integer, output Impossible.
- Otherwise, subtract the equations above to get $A B, A G, B G$. (Check that they are non-negative!)

Subtask 3

Subtask 3 (20 points): $0 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 20$

Subtask 3

Subtask 3 (20 points): $0 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 20$

- Just write six layers of for-loops to exhaust all match results :)

Subtask 3

Subtask 3 (20 points): $0 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 20$

- Just write six layers of for-loops to exhaust all match results :)
- There are at most 21^{6} combinations to check.

Subtask 3

Subtask 3 (20 points): $0 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 20$

- Just write six layers of for-loops to exhaust all match results :)
- There are at most 21^{6} combinations to check.
- Time complexity: $O\left(R^{6}\right)$, where R is the input range.

Subtask 4

Subtask 4 (25 points): $0 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 10^{6}$

Claim

If we fix any of the six scores, we may deduce the remaining five.

Proof

This is because we are solving the following system of equations:

$$
\left\{\begin{array}{l}
A B+A G=S_{A} \\
A G+B G=C_{G} \\
B G+B A=S_{B} \\
B A+G A=C_{A} \\
G A+G B=S_{G} \\
G B+A B=C_{B}
\end{array}\right.
$$

Subtask 4

Subtask 4 (25 points): $0 \leq S_{A}, S_{B}, S_{G}, C_{A}, C_{B}, C_{G} \leq 10^{6}$

Claim

If we fix any of the six scores, we may deduce the remaining five.

Proof

This is because we are solving the following system of equations:

$$
\left\{\begin{array}{l}
A B+A G=S_{A} \\
A G+B G=C_{G} \\
B G+B A=S_{B} \\
B A+G A=C_{A} \\
G A+G B=S_{G} \\
G B+A B=C_{B}
\end{array}\right.
$$

- This improves the algorithm to $O(R)$.

Subtask 5

Subtask 5 (10 points): $W=0$

Subtask 5

Subtask 5 (10 points): $W=0$

- For this subtask, we don't need to care about points.

Subtask 5

Subtask 5 (10 points): $W=0$

- For this subtask, we don't need to care about points.
- Say we try $A B=x$. Then, we have

$$
\left\{\begin{array}{rl}
A G & =S_{A}-A B \\
B G & =S_{A}-x \\
B A & =C_{G}-A G \\
B A & =C_{G}-B G \\
=S_{B}+x \\
G A & =C_{A}-B A \\
=C_{A}+S_{A}-x \\
G B & =S_{G}-G A
\end{array}=S_{G}-C_{G}-S_{A}+x+S_{B}-C_{G}+S_{A}-x .\right.
$$

Subtask 5

Subtask 5 (10 points): $W=0$

- For this subtask, we don't need to care about points.
- Say we try $A B=x$. Then, we have

$$
\begin{aligned}
& \left\{A G=S_{A}-A B=S_{A}-x\right. \\
& B G=C_{G}-A G=C_{G}-S_{A}+x \\
& B A=S_{B}-B G=S_{B}-C_{G}+S_{A}-x \\
& G A=C_{A}-B A=C_{A}-S_{B}+C_{G}-S_{A}+x \\
& G B=S_{G}-G A=S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x
\end{aligned}
$$

- Of course we should have $S_{A}+S_{B}+S_{G}=C_{A}+C_{B}+C_{G}$.

Subtask 5

Subtask 5 (10 points): $W=0$

- For this subtask, we don't need to care about points.
- Say we try $A B=x$. Then, we have

$$
\begin{aligned}
& \left(A G=S_{A}-A B=S_{A}-x\right. \\
& B G=C_{G}-A G=C_{G}-S_{A}+x \\
& B A=S_{B}-B G=S_{B}-C_{G}+S_{A}-x \\
& G A=C_{A}-B A=C_{A}-S_{B}+C_{G}-S_{A}+x \\
& G B=S_{G}-G A=S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x
\end{aligned}
$$

- Of course we should have $S_{A}+S_{B}+S_{G}=C_{A}+C_{B}+C_{G}$.
- Then, $A B=x$ is valid iff $A G, B G, B A, G B, G A$ are non-negative.

Subtask 5

Subtask 5 (10 points): $W=0$

- For this subtask, we don't need to care about points.
- Say we try $A B=x$. Then, we have
- Of course we should have $S_{A}+S_{B}+S_{G}=C_{A}+C_{B}+C_{G}$.
- Then, $A B=x$ is valid iff $A G, B G, B A, G B, G A$ are non-negative.
- The above equations give the valid range of x.

Subtask 6

Subtask 6 (25 points): No additional constraints

Subtask 6

Subtask 6 (25 points): No additional constraints

- Again, let $A B=x$.

Subtask 6

Subtask 6 (25 points): No additional constraints

- Again, let $A B=x$.
- We know how to express other variables in terms of x and constants.

Subtask 6

Subtask 6 (25 points): No additional constraints

- Again, let $A B=x$.
- We know how to express other variables in terms of x and constants.
- Now, exhaust the match results. Just win/draw/lose, no scores.

Subtask 6

Subtask 6 (25 points): No additional constraints

- Again, let $A B=x$.
- We know how to express other variables in terms of x and constants.
- Now, exhaust the match results. Just win/draw/lose, no scores.
- So there are $3^{3}=27$ possibilities.

Subtask 6

Subtask 6 (25 points): No additional constraints

- Again, let $A B=x$.
- We know how to express other variables in terms of x and constants.
- Now, exhaust the match results. Just win/draw/lose, no scores.
- So there are $3^{3}=27$ possibilities.
- Check if points $\left(P_{A}, P_{B}\right.$, and $\left.P_{G}\right)$ match, then try to find a valid x.

Subtask 6

Subtask 6 (25 points): No additional constraints

- Again, let $A B=x$.
- We know how to express other variables in terms of x and constants.
- Now, exhaust the match results. Just win/draw/lose, no scores.
- So there are $3^{3}=27$ possibilities.
- Check if points $\left(P_{A}, P_{B}\right.$, and $\left.P_{G}\right)$ match, then try to find a valid x.
- This can be done, again, by solving inequalities (and equalities).

Subtask 6

- Recall:

$$
\left\{\begin{aligned}
A G & =S_{A}-x \\
B G & =C_{G}-S_{A}+x \\
B A & =S_{B}-C_{G}+S_{A}-x \\
G A & =C_{A}-S_{B}+C_{G}-S_{A}+x \\
G B & =S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x
\end{aligned}\right.
$$

Subtask 6

- Recall:

$$
\left\{\begin{aligned}
A G & =S_{A}-x \\
B G & =C_{G}-S_{A}+x \\
B A & =S_{B}-C_{G}+S_{A}-x \\
G A & =C_{A}-S_{B}+C_{G}-S_{A}+x \\
G B & =S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x
\end{aligned}\right.
$$

- For example, requiring Alpha defeats Beta means that $A B>B A$, or $x>S_{B}-C_{G}+S_{A}-x$.

Subtask 6

- Recall:

$$
\left\{\begin{aligned}
A G & =S_{A}-x \\
B G & =C_{G}-S_{A}+x \\
B A & =S_{B}-C_{G}+S_{A}-x \\
G A & =C_{A}-S_{B}+C_{G}-S_{A}+x \\
G B & =S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x
\end{aligned}\right.
$$

- For example, requiring Alpha defeats Beta means that $A B>B A$, or $x>S_{B}-C_{G}+S_{A}-x$.
- Requiring Beta draws against Gamma means that $B G=G B$, or $C_{G}-S_{A}+x=S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x$.

Subtask 6

- Recall:

$$
\left\{\begin{aligned}
A G & =S_{A}-x \\
B G & =C_{G}-S_{A}+x \\
B A & =S_{B}-C_{G}+S_{A}-x \\
G A & =C_{A}-S_{B}+C_{G}-S_{A}+x \\
G B & =S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x
\end{aligned}\right.
$$

- For example, requiring Alpha defeats Beta means that $A B>B A$, or $x>S_{B}-C_{G}+S_{A}-x$.
- Requiring Beta draws against Gamma means that $B G=G B$, or $C_{G}-S_{A}+x=S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x$.
- These constraints give the valid range of x.

Subtask 6

- Recall:

$$
\left\{\begin{aligned}
A G & =S_{A}-x \\
B G & =C_{G}-S_{A}+x \\
B A & =S_{B}-C_{G}+S_{A}-x \\
G A & =C_{A}-S_{B}+C_{G}-S_{A}+x \\
G B & =S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x
\end{aligned}\right.
$$

- For example, requiring Alpha defeats Beta means that $A B>B A$, or $x>S_{B}-C_{G}+S_{A}-x$.
- Requiring Beta draws against Gamma means that $B G=G B$, or $C_{G}-S_{A}+x=S_{G}-C_{A}+S_{B}-C_{G}+S_{A}-x$.
- These constraints give the valid range of x.
- Alternatively, one may use binary search to find one possible x.

Subtask 6

- But a simpler solution exists!

Subtask 6

- But a simpler solution exists!
- Exhausting the match results (win/draw/lose) means that we require $A B-B A, B G-G B, G A-A G$ to be positive/zero/negative.

Subtask 6

- But a simpler solution exists!
- Exhausting the match results (win/draw/lose) means that we require $A B-B A, B G-G B, G A-A G$ to be positive/zero/negative.

$$
\left\{\begin{aligned}
A B-B A & =2 x-f(A, B) \\
B G-G B & =2 x-f(B, G) \\
G A-A G & =2 x-f(G, A)
\end{aligned}\right.
$$

Subtask 6

- But a simpler solution exists!
- Exhausting the match results ($\mathrm{win} / \mathrm{draw} / \mathrm{lose}$) means that we require $A B-B A, B G-G B, G A-A G$ to be positive/zero/negative.

$$
\left\{\begin{aligned}
A B-B A & =2 x-f(A, B) \\
B G-G B & =2 x-f(B, G) \\
G A-A G & =2 x-f(G, A)
\end{aligned}\right.
$$

- $f(A, B), f(B, G), f(G, A)$ are constants.

Subtask 6

- But a simpler solution exists!
- Exhausting the match results (win/draw/lose) means that we require $A B-B A, B G-G B, G A-A G$ to be positive/zero/negative.

$$
\left\{\begin{aligned}
A B-B A & =2 x-f(A, B) \\
B G-G B & =2 x-f(B, G) \\
G A-A G & =2 x-f(G, A)
\end{aligned}\right.
$$

- $f(A, B), f(B, G), f(G, A)$ are constants.
- They may be computed using the equations in the previous slide.

Subtask 6

- But a simpler solution exists!
- Exhausting the match results (win/draw/lose) means that we require $A B-B A, B G-G B, G A-A G$ to be positive/zero/negative.

$$
\left\{\begin{aligned}
A B-B A & =2 x-f(A, B) \\
B G-G B & =2 x-f(B, G) \\
G A-A G & =2 x-f(G, A)
\end{aligned}\right.
$$

- $f(A, B), f(B, G), f(G, A)$ are constants.
- They may be computed using the equations in the previous slide.
- Therefore, it suffices to check all x "near" $\frac{f(A, B)}{2}, \frac{f(B, G)}{2}$, or $\frac{f(G, A)}{2}$.

Happy Ending？Not Yet！

－Checking these values of x is not enough！
2017－12－25 13：01：27 kctung－RB教教徒 S182－Tournament－

Wrong Answer Score： 95.821

Happy Ending？Not Yet！

－Checking these values of x is not enough！
2017－12－25 13：01：27 kctung－RB教教徒 S182－Tournament

Wrong Answer Score： 95.821

－One also needs to check all x such that either of $A B, B A, A G, G A$ ， $B G, G B$ is zero．

Happy Ending？Not Yet！

－Checking these values of x is not enough！
2017－12－25 13：01：27 kctung－RB教教徒 S182－Tournament－

Wrong Answer Score： 95.821

－One also needs to check all x such that either of $A B, B A, A G, G A$ ， $B G, G B$ is zero．
－Like this：

```
test((gs[1] - gc[2] + gs[0]) / 2);
test((gc[1] - gs[2] + gs[0]) / 2);
test((gc[1] - gc[2] + gs[0]) / 2);
test(0);
test(gs[0]);
test(gs[0] - gc[2]);
test(gs[0] - gc[2] + gs[1]);
test(gs[0] - gc[2] + gs[1] - gc[0]);
test(gs[0] - gc[2] + gs[1] - gc[0] + gs[2]);
```

The End

- Questions?

