S181－Odd is Odd

Percy Wong \｛percywtc\}

S181 - Odd is Odd

The Problem

Need C secs to move one to its left.
Need D secs to move one to its right.

SUBTASKS

4	6	9	12	
1	0	3	2	

For all cases:		
$2 \leq N \leq 10^{5}$		
$0 \leq A_{i} \leq 18$		
$1 \leq C, D \leq 10^{4}$		
	Points	Constraints
1	14	$N=3$
2	16	Exactly two integers in A_{i} are odd.
3	13	All A_{i} are odd.
	24	$2 \leq N \leq 1000$
	33	No additional constraints.

Background

Problem Idea By－percywtc

Testdata By－percywtc；microtony

Initial version is not cyclic but linear，which should be slightly easier

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Statistics

0 points	$17+0+0+0=17$
13 points	$5+0+0+0=5$
14 points $\quad 3+2+0+0=5$	
27 points $\quad 0+1+0+0=1$	
30 points $\quad 2+3+0+0=5$	
43 points $\quad 14+8+2+0=24$	
67 points $\quad 1+0+0+0=1$	
100 points $2+7+12+8=29$	

First solved by dbsgame at 9m 18s

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

SUBTASKS

For all cases：
$2 \leq N \leq 10^{5}$
$0 \leq A_{i} \leq 18$
$1 \leq C, D \leq 10^{4}$

Points Constraints

$14 \quad N=3$
216 Exactly two integers in A_{i} are odd．
313 All A_{i} are odd．
$4242 \leq N \leq 1000$
533 No additional constraints．

Solution 1 －The First Subtask

14 points for just handling $\mathbf{N}=\mathbf{3}$
We can notice that it is impossible only when there are $\mathbf{1}$ or $\mathbf{3}$ odd numbers
If there are no odd numbers，the answer is simply $\mathbf{0}$
Otherwise，the 2 odd numbers must be sitting next to each other， Therefore the answer must be $\boldsymbol{\operatorname { m i n }}(\mathbf{C}, \mathbf{D})$

香港電腦奧林匹克競賽

Solution 1 - The First Subtask

This solution can only solve Subtask 1, nothing else :)

Subtask	Score	Max Score
1	14	14
2	0	16
3	0	13
4	0	24
5	0	33
Total	$\mathbf{1 4}$	$\mathbf{1 0 0}$

Solution 1 －The First Subtask

PSEUDOCODE

```
ReadLine(N, C, D)
ReadLine(x, y, z)
If ((x + y + z) % 2 = 0)
    PrintLine(-1)
Else
    If (x % 2 = 1 OR y % 2 = 1)
        PrintLine(Min(C, D))
    Else
        PrintLine(0)
```

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 2 －The Second Subtask

16 points for just handling exactly $\mathbf{2}$ odd numbers
It is easy to see that the optimal solution must be moving one nugget from one person to the other
Here，we must use the shorter distance between them， And the direction based on which is smaller between \mathbf{C} and \mathbf{D}

Therefore，the answer is mindist＊ $\boldsymbol{\operatorname { m i n }}(\mathbf{C}, \mathrm{D})$

Solution 2 －The Second Subtask

This solution can only solve Subtask 2，nothing else ：）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask	Score	Max Score
1	0	14
2	16	16
3	0	13
4	0	24
5	0	33
Total	$\mathbf{1 6}$	$\mathbf{1 0 0}$

Solution 2 －The Second Subtask

PSEUDOCODE

```
ReadLine(N, C, D)
For i = 1 .. N
    Read(x)
    If (x % 2 = 1)
        If (PosA = NULL)
        PosA = i
        Else
    PosB = i
PrintLine(Min(PosB - PosA, N - PosB + PosA) * Min(C, D))
```

HhCo
香港電胉奥林匹克競寒
Hong Kong Olympiad in Informatics

Solution 3 －The Third Subtask

13 points for just handling all odd numbers
When \mathbf{N} is odd，meaning that it is impossible
When \mathbf{N} is even，everyone having odd number of nuggets， We can just pair up them with their neighbours，and then move one to other Therefore，the answer will be（N／2）＊Min（C，D）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 3 －The Third Subtask

This solution can only solve Subtask 3，nothing else ：）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask	Score	Max Score
1	0	14
2	0	16
3	13	13
4	0	24
5	0	33
Total	$\mathbf{1 3}$	$\mathbf{1 0 0}$

Solution 3 －The Third Subtask

PSEUDOCODE

```
ReadLine(N, C, D)
If (N % 2 = 0)
    PrintLine((N / 2) * Min(C, D))
Else
    PrintLine(-1)
```


Solutions Summary

Solutions		1－1 ${ }^{\text {st }}$ Sub	2－2 ${ }^{\text {nd }}$ Sub	3－3 ${ }^{\text {rd }}$ Sub	
Subtask	Max Score	Score			Score
1	14	14	0	0	14
2	16	0	16	0	16
3	13	0	0	13	13
4	24	0	0	0	0
5	33	0	0	0	0
Total	100	14	16	13	43

Solution 4 －The Full Solution

First，we can notice that only positions with odd nuggets are important We always want to pass a nugget from one to another

Also，we can notice that the direction is not important， We can simply choose it based on which is minimum between \mathbf{C} and \mathbf{D} So now we know that for two selected position，the cost of moving one to other must be dist＊ $\operatorname{Min}(\mathbf{C}, \mathrm{D})$

Solution 4 －The Full Solution

If there are＂odd number＂of odd numbers，i．e．sum is odd， The answer is impossible，otherwise，we should pair up them to find solution

Solution 4 －The Full Solution

Notice that we must find non－overlapping pairing way The optimal solution must be one of the following two：

Solution 4 －The Full Solution

Here is briefly why we won＇t consider overlapping pairing way

$(a+b)+(b+c)>a+c$

$(a+b+c)+(b)>a+c$

Solution 4 －The Full Solution

	Subtask	Score	Max Score
	1	14	14
	2	16	16
	3	13	13
	4	24	24
	5	33	33
HHC 香港電腦奧林匹克競賽 Hong Kong Olympiad in Informatics	Total	100	100

