J184－Mysterious Area

Percy Wong \｛percywtc\}

The Problem

| 7 | | | | | | DROP | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 20 |
| 32 | | | | | | | |

HhCe
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

OUTPUT

DROP／ESCAPE
x－／y－coordinate
distance travelled

SUBTASKS

For all cases：
$1 \leq N \leq 2 \times 10^{5}$ ．
It is guaranteed that $H_{1 \ldots N}$ is a permutation of $1 \ldots N$ ．
Points Constraints

2 $171 \leq N \leq 50$
$3241 \leq N \leq 2000$
419
530
It is guaranteed that the bird can always escape
No additional constraints

Background

Problem Idea By－percywtc
Testdata By
－jeremy624；percywtc；microtony

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Statistics

0 points $\quad 33+11+1+0=45$
10 points $\quad 5+2+0+0=7$
19 points $0+0+3+0=3$
27 points $\quad 0+1+0+0=1$
29 points $\quad 1+3+9+1=14$
51 points $0+2+1+0=3$
70 points $0+1+1+4=6$
100 points $0+0+0+3=3$

First solved by hccheng1 at 1h 59m 18s

SUBTASKS

For all cases：
$1 \leq N \leq 2 \times 10^{5}$ ．
It is guaranteed that $H_{1 \ldots N}$ is a permutation of $1 \ldots N$ ．

Points Constraints

1

2
$3241 \leq N \leq 2000$
419 It is guaranteed that the bird can always escape

530 No additional constraints

Solution 1 －The First Subtask

10 points for just handling two cases： $\mathbf{H}=\{\mathbf{1 , 2 \}}$ and $\mathbf{H}=\{\mathbf{2}, \mathbf{1}\}$
So we can simply＂hardcode＂them after solving them on our own

\rightarrow	\rightarrow	\rightarrow	\rightarrow	\downarrow	
			\downarrow	\leftarrow	
1	2	3	4	5	6

INPUT OUTPUT
 2
 12

111
香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

INPUT OUTPUT

ESCAPE
1
4

Solution 1 - The First Subtask

This solution can only solve Subtask 1, nothing else :)

Subtask	Score	Max Score
1	10	10
2	0	17
3	0	24
4	0	19
5	0	30
Total	$\mathbf{1 0}$	$\mathbf{1 0 0}$

Solution 1 －The First Subtask

PSEUDOCODE

ReadLine（N）
ReadLine（ a, b ）
If（a＝1）

Else

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 2 －Escape

Considering only the cases that the bird can escape
It only happens iff the pillar with $\mathbf{H}=\mathbf{N}-\mathbf{1}$ is on the left of that with $\mathbf{H}=\mathbf{N}$ Thus，its y－coordinate is $\mathbf{N - 1}$ ，and the distance travelled is $\mathbf{6 \times P o s i t i o n (\mathbf { N }) - \mathbf { 2 }}$

INPUT OUTPUT
 4
 2431
 ESCAPE
 3
 10

	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\downarrow							
$\mathbf{y = 3}$	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow							
1	2	3	4	5	6	7	8	9	10	11	12	

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 2 - Escape

This solution can only solve Subtask 4, nothing else :)

Subtask	Score	Max Score
1	0	10
2	0	17
3	0	24
4	19	19
5	0	30
Total	$\mathbf{1 9}$	$\mathbf{1 0 0}$

Solution 2 －Escape

PSEUDOCODE

```
Read(N)
For i = 1 .. N
    Read(x)
    Pos[x] = i
PrintLine('ESCAPE')
PrintLine(N - 1)
PrintLine(6 * Pos[N] - 2)
```


Solution 3 －Simulation

We can just simply store the entire grid with a 2－d array： Marking A［i］［ j ］as TRUE only if the cell（ \mathbf{i}, \mathbf{j} ）is occupied by the pillars With fine implementation，the code should be able to work in $O\left(N^{2}\right)$ ， Which can pass Subtask 1,2 and 3 within time limit

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask	Score	Max Score
1	10	10
2	17	17
3	24	24
4	0	19
5	0	30
Total	$\mathbf{5 1}$	$\mathbf{1 0 0}$

Solution 3 －Simulation

PSEUDOCODE

```
For i = 1 .. N
    For j = 1 .. H[i]
    A[i * 3][j] = True
cur_x = 1
cur_y = N
dist = 0
dir = +1
```

香港電搰奥林匹克競寒
Hong Kong Olympiad in Informatics

```
While (cur_x > 0 AND cur_y > 0)
    dist++
    cur_x += dir
    If (A[cur_x][cur_y] = True)
        dir *= -1
        cur_x += dir
        cur_y--
If (cur_x = 0)
    PrintLine('ESCAPE')
Else
    PrintLine('DROP')
```


Solutions Summary

Solutions		1－First Sub	2－Escape	3－Sim		
Subtask	Max Score		Score			Score
1	10	10	0	10		10
2	17	0	0	17		17
3	24	0	0	24		cumulative
4	19	0	19	0		24
5	30	0	0	0		19
Total	$\mathbf{1 0 0}$	$\mathbf{1 0}$	$\mathbf{1 9}$	$\mathbf{5 1}$		0

Solution 4 －Optimized Solution

We can see that if the bird cannot escape， The interval of its x－coordinate keep squeezing

We can maintain the left bound and the right bound of its x－coordinate， By updating it every time its y－coordinate decreases by one

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Initially at $\mathbf{y}=9$

Initially at $\mathbf{y}=9$

Changing from $\mathbf{y}=9$ to $\mathbf{y}=8$

Changing from $\mathbf{y}=\mathbf{9}$ to $\mathbf{y}=\mathbf{8}$

Changing from $\mathbf{y}=8$ to $\mathbf{y}=\mathbf{7}$

Changing from $\mathbf{y}=\mathbf{8}$ to $\mathbf{y}=\mathbf{7}$

Changing from $\mathbf{y}=\mathbf{7}$ to $\mathbf{y}=\mathbf{6}$

Changing from $\mathbf{y}=\mathbf{7}$ to $\mathbf{y}=\mathbf{6}$

Changing from $\mathbf{y}=\mathbf{6}$ to $\mathbf{y}=\mathbf{5}$

Changing from $\mathbf{y}=\mathbf{6}$ to $\mathbf{y}=\mathbf{5}$

Changing from $\mathbf{y}=\mathbf{5}$ to $\mathbf{y}=\mathbf{4}$

Changing from $\mathbf{y}=\mathbf{5}$ to $\mathbf{y}=\mathbf{4}$

Changing from $\mathbf{y}=\mathbf{4}$ to $\mathbf{y}=\mathbf{3}$

Changing from $\mathbf{y}=\mathbf{4}$ to $\mathbf{y}=\mathbf{3}$

Changing from $\mathbf{y}=\mathbf{3}$ to $\mathbf{y}=\mathbf{2}$

Changing from $\mathbf{y}=\mathbf{3}$ to $\mathbf{y}=\mathbf{2}$

Changing from $\mathbf{y}=\mathbf{2}$ to $\mathbf{y}=\mathbf{1}$

Changing from $\mathbf{y}=\mathbf{2}$ to $\mathbf{y}=\mathbf{1}$

Changing from $\mathbf{y}=\mathbf{1}$ to $\mathbf{y}=\mathbf{0}$

Solution 4 - Optimized Solution

In each decrement of y-coordinate, $O(1)$ for updating bounds
Total has \mathbf{N} decrement of \mathbf{y}-coordinate as initial $\mathbf{y}=\mathbf{N}$
Therefore, overall time complexity is $O(N)$
Can pass the time limit for all test cases :)

Subtask	Score	Max Score
1	10	10
2	17	17
3	24	24
4	19	19
5	30	30
Total	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

