J184 - Mysterious Area

Percy Wong {percywtc}

The Problem

7							DROP
1	2	3	4	5	6	7	20
							32

OUTPUT

DROP / ESCAPE x- / y-coordinate distance travelled

SUBTASKS

For all cases:

 $1 \le N \le 2 \times 10^5.$

It is guaranteed that $H_{1...N}$ is a permutation of 1...N.

	Points	Constraints
1	10	N=2
2	17	$1 \leq N \leq 50$
3	24	$1 \leq N \leq 2000$
4	19	It is guaranteed that the bird can always escape
.5	30	No additional constraints

Background

Problem Idea By - percywtc

Testdata By - jeremy624; percywtc; microtony

Statistics

0 points
$$33 + 11 + 1 + 0 = 45$$

10 points $5 + 2 + 0 + 0 = 7$
19 points $0 + 0 + 3 + 0 = 3$
27 points $0 + 1 + 0 + 0 = 1$
29 points $1 + 3 + 9 + 1 = 14$
51 points $0 + 2 + 1 + 0 = 3$
70 points $0 + 1 + 1 + 4 = 6$
100 points $0 + 0 + 0 + 3 = 3$

First solved by **hccheng1** at **1h 59m 18s**

SUBTASKS

For all cases:

$$1 \le N \le 2 \times 10^5.$$

It is guaranteed that $H_{1...N}$ is a permutation of 1...N.

	Points	Constraints
1	10	N=2
2	17	$1 \leq N \leq 50$
3	24	$1 \leq N \leq 2000$
4	19	It is guaranteed that the bird can always escape
5	30	No additional constraints

Solution 1 - The First Subtask

10 points for just handling two cases: $H = \{1, 2\}$ and $H = \{2, 1\}$

So we can simply "hardcode" them after solving them on our own

\rightarrow	\rightarrow	\rightarrow	\rightarrow	\downarrow	
			↓	←	
1	2	3	4	5	6

	\rightarrow	↓ ↓				
y = 1	←	←				
	1	2	3	4	5	6

INPUT OUTPUT

DR0 2 4 7

INPUI	OUTPU
2	ESCAPE
2 1	1
	4

Solution 1 - The First Subtask

This solution can only solve Subtask 1, nothing else:)

Subtask	Score	Max Score
1	10	10
2	0	17
3	0	24
4	0	19
5	0	30
Total	10	100

Solution 1 - The First Subtask

PSEUDOCODE

```
ReadLine(N)
ReadLine(a, b)
If (a = 1)
...
Else
...
```


Solution 2 - Escape

Considering only the cases that the bird can escape

It only happens iff the pillar with $\mathbf{H} = \mathbf{N} - \mathbf{1}$ is on the left of that with $\mathbf{H} = \mathbf{N}$ Thus, its y-coordinate is $\mathbf{N} - \mathbf{1}$, and the distance travelled is $\mathbf{6} \times \mathbf{Position}(\mathbf{N}) - \mathbf{2}$

INPUT OUTPUT

4 ESCAPE 2 4 3 1 3

Solution 2 - Escape

This solution can only solve Subtask 4, nothing else:)

Subtask	Score	Max Score
1	0	10
2	0	17
3	0	24
4	19	19
5	0	30
Total	19	100

Solution 2 - Escape

PSEUDOCODE

```
Read(N)
For i = 1 .. N
  Read(x)
  Pos[x] = i
PrintLine('ESCAPE')
PrintLine(N - 1)
PrintLine(6 * Pos[N] - 2)
```


Solution 3 - Simulation

We can just simply store the entire grid with a 2-d array: Marking A[i][j] as TRUE only if the cell (i, j) is occupied by the pillars

With fine implementation, the code should be able to work in $O(N^2)$,

Which can pass Subtask 1, 2 and 3 within time limit

Subtask	Score	Max Score
1	10	10
2	17	17
3	24	24
4	0	19
5	0	30
Total	51	100

Solution 3 - Simulation

PSEUDOCODE

```
For i = 1 .. N
   For j = 1 .. H[i]
     A[i * 3][j] = True
cur_x = 1
cur_y = N
dist = 0
dir = +1
```

```
While (cur_x > 0 \text{ AND } cur_y > 0)
  dist++
  cur x += dir
  If (A[cur_x][cur_y] = True)
    dir *= -1
    cur_x += dir
    cur_y--
If (cur_x = 0)
  PrintLine('ESCAPE')
Else
  PrintLine('DROP')
```

Solutions Summary

Solutions		1 - First Sub	2 - Escape	3 - Sim		
Subtask Max Score		Score				
1	10	10	0	10		
2	17	0	0	17		
3	24	0	0	24		
4	19	0	19	0		
5	30	0	0	0		
Total	100	10	19	51		

cumulative

Score
10
17
24
19
0
70

Solution 4 - Optimized Solution

We can see that if the bird cannot escape, The interval of its x-coordinate keep squeezing

We can maintain the left bound and the right bound of its x-coordinate, By updating it every time its y-coordinate decreases by one

Initially at y = 9

Initially at y = 9

Changing from y = 9 to y = 8

Changing from y = 9 to y = 8

Changing from y = 8 to y = 7

Changing from y = 8 to y = 7

Changing from y = 7 to y = 6

Changing from y = 7 to y = 6

Changing from y = 6 to y = 5

Changing from y = 6 to y = 5

Changing from y = 5 to y = 4

Changing from y = 5 to y = 4

Changing from y = 4 to y = 3

Changing from y = 4 to y = 3

Changing from y = 3 to y = 2

Changing from y = 3 to y = 2

Changing from y = 2 to y = 1

Changing from y = 2 to y = 1

Changing from y = 1 to y = 0

Solution 4 - Optimized Solution

In each decrement of y-coordinate, O(1) for updating bounds Total has **N** decrement of y-coordinate as initial $\mathbf{y} = \mathbf{N}$

Therefore, overall time complexity is *O(N)*

Can pass the time limit for all test cases:)

Subtask	Score	Max Score
1	10	10
2	17	17
3	24	24
4	19	19
5	30	30
Total	100	100

