HKOI Junior Q3 (Shortest Path) Editorial

Alex Tung
alex20030190@yahoo.com.hk

27 January 2018
Table of Contents

1 Task Description

2 Statistics and Comments

3 Solution
 - How to get 52 points without knowing for-loop
 - The full solution

4 Implementation Tips
Given a $N \times M$ grid. Also given a parameter K.
Task Description

- Given a $N \times M$ grid. Also given a parameter K.
- Alice’s piece starts at cell (S_r, S_c) and she needs to bring the piece to cell (E_r, E_c).
Task Description

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell (S_r, S_c) and she needs to bring the piece to cell (E_r, E_c).
- For each move, she can move her piece X steps up, down, left, or right. X should equal 1 or a positive integer multiple of K.
Task Description

- Given a $N \times M$ grid. Also given a parameter K.
- Alice’s piece starts at cell (S_r, S_c) and she needs to bring the piece to cell (E_r, E_c).
- For each move, she can move her piece X steps up, down, left, or right. X should equal 1 or a positive integer multiple of K.
- Of course, after each step, Alice’s piece should remain on the board.
Task Description

- Given a \(N \times M \) grid. Also given a parameter \(K \).
- Alice’s piece starts at cell \((S_r, S_c)\) and she needs to bring the piece to cell \((E_r, E_c)\).
- For each move, she can move her piece \(X \) steps up, down, left, or right. \(X \) should equal 1 or a positive integer multiple of \(K \).
- Of course, after each step, Alice’s piece should remain on the board.
- Output a shortest sequence of moves, which brings her piece from \((S_r, S_c)\) to \((E_r, E_c)\).
<table>
<thead>
<tr>
<th>Sample Input 1</th>
<th>Sample Output 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 9 3</td>
<td>2</td>
</tr>
<tr>
<td>1 2</td>
<td>right 6</td>
</tr>
<tr>
<td>2 8</td>
<td>down 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Input 2</th>
<th>Sample Output 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 8 4</td>
<td>3</td>
</tr>
<tr>
<td>1 1</td>
<td>right 4</td>
</tr>
<tr>
<td>1 8</td>
<td>left 1</td>
</tr>
<tr>
<td></td>
<td>right 4</td>
</tr>
</tbody>
</table>
Constraints

For all cases:

\[1 \leq N, M \leq 10^9 \]
\[1 \leq K \leq 1000 \]

<table>
<thead>
<tr>
<th>Points</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>
Statistics

Attempts: 76
Mean: 24.684
Stddev: 22.315
Top scores: 100 (ethening, 1:11), 80 (mtyeung1), 52 (18 contestants)
Score distribution:
This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))
This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))

Ad-hoc problem
This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))

Ad-hoc problem

Getting $16 + 11 = 27$ points is easy, but full solution requires careful case handling.
This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))

Ad-hoc problem

Getting $16 + 11 = 27$ points is easy, but full solution requires careful case handling.

It is not easy to code the solution (more on that later).
Subtask 1 (16 points): \((E_r, E_c)\) is reachable in one move.
Subtask 1 (16 points): \((E_r, E_c)\) is reachable in one move.

- That means, in particular, that \((S_r, S_c)\) and \((E_r, E_c)\) are on the same row/column.
Subtask 1

Subtask 1 (16 points): \((E_r, E_c)\) is reachable in one move.

- That means, in particular, that \((S_r, S_c)\) and \((E_r, E_c)\) are on the same row/column.
- \(S_r > E_r\), then move “up”
- \(S_r < E_r\), then move “down”
- \(S_c > E_c\), then move “left”
- \(S_c < E_c\), then move “right”
Subtask 1

Subtask 1 (16 points): \((E_r, E_c)\) is reachable in one move.
- That means, in particular, that \((S_r, S_c)\) and \((E_r, E_c)\) are on the same row/column.
- \(S_r > E_r\), then move “up”
- \(S_r < E_r\), then move “down”
- \(S_c > E_c\), then move “left”
- \(S_c < E_c\), then move “right”
- What should \(X\) be? \(X\) just equals the distance between the two cells.
Subtask 2 (11 points): $K = 1$
Subtask 2 (11 points): $K = 1$

- You can divide the board into nine parts, using (S_r, S_c) as center.
- Then, write a bunch of ‘if’s :(
Subtask 2

Subtask 2 (11 points): $K = 1$

- You can divide the board into nine parts, using (S_r, S_c) as center.
- Then, write a bunch of ‘if’s :(
- To make life easier, observe that:

Observation 1

Horizontal (left/right) moves and vertical (up/down) moves are independent.
Subtask 3 (25 points): \(K = 2 \)
Subtask 3 (25 points): $K = 2$

- In this subtask, there are finally some (non-obvious) decision-making.
Subtask 3 (25 points): $K = 2$

- In this subtask, there are finally some (non-obvious) decision-making.
- By Observation 1, assume that $N = 1$ (so we are only concerned with horizontal moves).
Subtask 3 (25 points): $K = 2$

- In this subtask, there are finally some (non-obvious) decision-making.
- By Observation 1, assume that $N = 1$ (so we are only concerned with horizontal moves).
- Further assume that $S_c < E_c$ (so we need to bring the piece to the right).
Claim 1

Let $D := E_c - S_c$. Let $C := \lfloor \frac{D}{2} \rfloor$.

- If $D = 1$, the optimal solution is right 1.
- If $D > 1$ and is odd, an optimal solution is right $2C$; right 1.
- If D is even, the optimal solution is right $2C$.

Proof

It is obvious that we cannot do better.
Subtask 4 (28 points): \((S_r, S_c) = (1, 1)\)
Subtask 4 (28 points): \((S_r, S_c) = (1, 1)\)

- This is just a “safety net” for those who attempts the full solution :)
Subtask 4 (28 points): \((S_r, S_c) = (1, 1)\)

- This is just a “safety net” for those who attempts the full solution :)
- If you miss one case, you’ll pass this subtask but not the next one.
Subtask 5 (20 points): No additional constraints
Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that $N = 1$ and $S_c < E_c$.
Subtask 5

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that $N = 1$ and $S_c < E_c$.
- Again, let $D := E_c - S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.
Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that $N = 1$ and $S_c < E_c$.
- Again, let $D := E_c - S_c$, and $C := \left\lfloor \frac{D}{K} \right\rfloor$.
- For each move $\text{dir } X$, if $X = 1$ we say it is a small step; otherwise we say it consists of $\frac{X}{K}$ big step(s).
Subtask 5

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that $N = 1$ and $S_c < E_c$.
- Again, let $D := E_c - S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.
- For each move $\text{dir } X$, if $X = 1$ we say it is a small step; otherwise
 we say it consists of $\frac{X}{K}$ big step(s).

Note

One move may consist of one small step or many big steps. Do not confuse the notations!
Claim 2
It is optimal to avoid moving left with big steps.

Idea of Proof
Otherwise, we may cancel a “left” big step with a suitable “right” big step or \(K\) suitable “right” small steps, without affecting the validity of the solution. Such cancellation will not increase the number of moves.
Claim 2
It is optimal to avoid moving left with big steps.

Idea of Proof
Otherwise, we may cancel a “left” big step with a suitable “right” big step or K suitable “right” small steps, without affecting the validity of the solution. Such cancellation will not increase the number of moves.

Therefore, if we make B big steps (to the right), we will need to make $|D - K \times B|$ small steps (could be to the left or to the right).
Claim 3

It is optimal to take $B = C$ or $B = C + 1$ (recall that $C := \lfloor \frac{D}{K} \rfloor$).

Proof

If $B' < C$, compare with $B = C$. Number of small steps increases, while number of moves for the big steps decreases by at most one.

If $B' > C + 1$, compare with $B = C + 1$. Number of small steps increases, while number of moves for the big steps does not decrease.
Recall that $D := E_c - S_c$, and $C := \lfloor \frac{D}{K} \rfloor$. Two cases to consider: $B = C$ for big steps, or $B = C + 1$ for big steps.
Recall that $D := E_c - S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.

Two cases to consider: $B = C$ big steps, or $B = C + 1$ big steps.
Recall that \(D := E_c - S_c \), and \(C := \lfloor \frac{D}{K} \rfloor \).

Two cases to consider: \(B = C \) big steps, or \(B = C + 1 \) big steps.

Case 1 (\(B = C \))

- If \(B = 0 \), an optimal solution is right 1 (\(D \) times).
- Otherwise, an optimal solution is right \(K \times B; \) right 1 ((\(D - K \times B \) times)).
Subtask 5

Case 2 ($B = C + 1$)

- If $K \geq M$, we should disregard this case. Otherwise,
- if $K \times B < M$, we need $1 + (K \times B - D)$ moves;
- if $K \times B \geq M$, we need $2 + (K \times B - D)$ moves.
Case 2 \((B = C + 1)\)

- If \(K \geq M\), we should disregard this case. Otherwise,
- if \(K \times B < M\), we need \(1 + (K \times B - D)\) moves.
- if \(K \times B \geq M\), we need \(2 + (K \times B - D)\) moves.

Again, it is obvious that the number of moves is optimal. So, it remains to construct a solution with the given number of moves (not easy!).
Case 2a \((B = C + 1, K \times B < M)\)

Set \(REMAIN := (K \times B - D), LOC := S_c, GOAL := E_c\).

Then perform the following:

1. while \(REMAIN > 0\) and \(LOC > 1\)

 move left 1

 \(REMAIN := REMAIN - 1\)

 \(LOC := LOC - 1\)

2. move right \(K \times B\); \(LOC := LOC + K \times B\)

3. while \(LOC > E_c\)

 move left 1

 \(LOC := LOC - 1\)
Case 2b \((B = C + 1, \ K \times B \geq M)\)

Set \(\text{REMAIN} := (K \times B - D), \ \text{LOC} := S_c, \ \text{GOAL} := E_c.\)

Then perform the following:

1. while \(\text{REMAIN} > 0\) and \(\text{LOC} > 1\)
 - move left 1
 - \(\text{REMAIN} := \text{REMAIN} - 1\)
 - \(\text{LOC} := \text{LOC} - 1\)

2. move right \(K\)

3. while \(\text{REMAIN} > 0\)
 - move left 1
 - \(\text{REMAIN} := \text{REMAIN} - 1\)

4. move right \(K \times (B - 1)\)
Finally, choose the case with fewer moves, and find a sequence of moves as described.

Note

From the construction above, we see that the number of moves is $O(K)$ with a reasonably small constant.
Here are some examples. Let’s dry-run them!

<table>
<thead>
<tr>
<th>M</th>
<th>K</th>
<th>S_c</th>
<th>E_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>
But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using *one single function!*
But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using *one single function*!
- Use a function like `void solve_1D(int dim, int S, int E, int K, string move_front, string move_back)`.

Essentially, we are flipping the board.

Alex Tung

J183 Editorial

27 Jan 18
But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like `void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).
- Then, if $S_r < E_r$, call `solve_1D(N, S_r, E_r, K, "right", "left")`; otherwise, call `solve_1D(N, N + 1 - S_r, N + 1 - E_r, K, "left", "right")`. Essentially, we are flipping the board.
My C++ solution has about 70 lines, including 15 lines of headers.

The key is to handle all directions using one single function!

Use a function like `void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).

Then, if $S_r < E_r$, call `solve_1D(N, S_r, E_r, K, "right", "left")`; otherwise, call `solve_1D(N, N + 1 − S_r, N + 1 − E_r, K, "left", "right")`.

Similarly, if $S_c < E_c$, call `solve_1D(M, S_c, E_c, K, "down", "up")`; otherwise, call `solve_1D(M, M + 1 − S_c, M + 1 − E_c, K, "up", "down")`.

Essentially, we are flipping the board.
But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).
- Then, if $S_r < E_r$, call solve_1D(N, S_r, E_r, K, "right", "left"); otherwise, call solve_1D(N, $N+1-S_r$, $N+1-E_r$, K, "left", "right").
- Similarly, if $S_c < E_c$, call solve_1D(M, S_c, E_c, K, "down", "up"); otherwise, call solve_1D(M, $M+1-S_c$, $M+1-E_c$, K, "up", "down").
- Essentially, we are flipping the board.
Questions?