
HKOI Junior Q3 (Shortest Path)
Editorial

Alex Tung
alex20030190@yahoo.com.hk

27 January 2018

Alex Tung J183 Editorial 27 Jan 18 1 / 24

Table of Contents

1 Task Description

2 Statistics and Comments

3 Solution
How to get 52 points without knowing for-loop
The full solution

4 Implementation Tips

Alex Tung J183 Editorial 27 Jan 18 2 / 24

Task Description

Given a N ×M grid. Also given a parameter K .

Alice’s piece starts at cell (Sr ,Sc) and she needs to bring the piece to
cell (Er ,Ec).

For each move, she can move her piece X steps up, down, left, or
right. X should equal 1 or a positive integer multiple of K .

Of course, after each step, Alice’s piece should remain on the board.

Output a shortest sequence of moves, which brings her piece from
(Sr ,Sc) to (Er ,Ec).

Alex Tung J183 Editorial 27 Jan 18 3 / 24

Task Description

Given a N ×M grid. Also given a parameter K .

Alice’s piece starts at cell (Sr ,Sc) and she needs to bring the piece to
cell (Er ,Ec).

For each move, she can move her piece X steps up, down, left, or
right. X should equal 1 or a positive integer multiple of K .

Of course, after each step, Alice’s piece should remain on the board.

Output a shortest sequence of moves, which brings her piece from
(Sr ,Sc) to (Er ,Ec).

Alex Tung J183 Editorial 27 Jan 18 3 / 24

Task Description

Given a N ×M grid. Also given a parameter K .

Alice’s piece starts at cell (Sr ,Sc) and she needs to bring the piece to
cell (Er ,Ec).

For each move, she can move her piece X steps up, down, left, or
right. X should equal 1 or a positive integer multiple of K .

Of course, after each step, Alice’s piece should remain on the board.

Output a shortest sequence of moves, which brings her piece from
(Sr ,Sc) to (Er ,Ec).

Alex Tung J183 Editorial 27 Jan 18 3 / 24

Task Description

Given a N ×M grid. Also given a parameter K .

Alice’s piece starts at cell (Sr ,Sc) and she needs to bring the piece to
cell (Er ,Ec).

For each move, she can move her piece X steps up, down, left, or
right. X should equal 1 or a positive integer multiple of K .

Of course, after each step, Alice’s piece should remain on the board.

Output a shortest sequence of moves, which brings her piece from
(Sr ,Sc) to (Er ,Ec).

Alex Tung J183 Editorial 27 Jan 18 3 / 24

Task Description

Given a N ×M grid. Also given a parameter K .

Alice’s piece starts at cell (Sr ,Sc) and she needs to bring the piece to
cell (Er ,Ec).

For each move, she can move her piece X steps up, down, left, or
right. X should equal 1 or a positive integer multiple of K .

Of course, after each step, Alice’s piece should remain on the board.

Output a shortest sequence of moves, which brings her piece from
(Sr ,Sc) to (Er ,Ec).

Alex Tung J183 Editorial 27 Jan 18 3 / 24

Sample IO

Sample Input 1

2 9 3
1 2
2 8

Sample Input 2

1 8 4
1 1
1 8

Sample Output 1

2
right 6
down 1

Sample Output 2

3
right 4
left 1
right 4

Alex Tung J183 Editorial 27 Jan 18 4 / 24

Constraints

Alex Tung J183 Editorial 27 Jan 18 5 / 24

Statistics

Attempts: 76
Mean: 24.684
Stddev: 22.315
Top scores: 100 (ethening, 1:11), 80 (mtyeung1), 52 (18 contestants)
Score distribution:

Alex Tung J183 Editorial 27 Jan 18 6 / 24

Comments

This is the hardest problem in HKOI 2017/18 Junior. (Far easier than
J174 though ;))

Ad-hoc problem

Getting 16 + 11 = 27 points is easy, but full solution requires careful
case handling.

It is not easy to code the solution (more on that later).

Alex Tung J183 Editorial 27 Jan 18 7 / 24

Comments

This is the hardest problem in HKOI 2017/18 Junior. (Far easier than
J174 though ;))

Ad-hoc problem

Getting 16 + 11 = 27 points is easy, but full solution requires careful
case handling.

It is not easy to code the solution (more on that later).

Alex Tung J183 Editorial 27 Jan 18 7 / 24

Comments

This is the hardest problem in HKOI 2017/18 Junior. (Far easier than
J174 though ;))

Ad-hoc problem

Getting 16 + 11 = 27 points is easy, but full solution requires careful
case handling.

It is not easy to code the solution (more on that later).

Alex Tung J183 Editorial 27 Jan 18 7 / 24

Comments

This is the hardest problem in HKOI 2017/18 Junior. (Far easier than
J174 though ;))

Ad-hoc problem

Getting 16 + 11 = 27 points is easy, but full solution requires careful
case handling.

It is not easy to code the solution (more on that later).

Alex Tung J183 Editorial 27 Jan 18 7 / 24

Subtask 1

Subtask 1 (16 points): (Er ,Ec) is reachable in one move.

That means, in particular, that (Sr ,Sc) and (Er ,Ec) are on the same
row/column.

Sr > Er , then move “up”

Sr < Er , then move “down”

Sc > Ec , then move “left”

Sc < Ec , then move “right”

What should X be? X just equals the distance between the two cells.

Alex Tung J183 Editorial 27 Jan 18 8 / 24

Subtask 1

Subtask 1 (16 points): (Er ,Ec) is reachable in one move.

That means, in particular, that (Sr ,Sc) and (Er ,Ec) are on the same
row/column.

Sr > Er , then move “up”

Sr < Er , then move “down”

Sc > Ec , then move “left”

Sc < Ec , then move “right”

What should X be? X just equals the distance between the two cells.

Alex Tung J183 Editorial 27 Jan 18 8 / 24

Subtask 1

Subtask 1 (16 points): (Er ,Ec) is reachable in one move.

That means, in particular, that (Sr ,Sc) and (Er ,Ec) are on the same
row/column.

Sr > Er , then move “up”

Sr < Er , then move “down”

Sc > Ec , then move “left”

Sc < Ec , then move “right”

What should X be? X just equals the distance between the two cells.

Alex Tung J183 Editorial 27 Jan 18 8 / 24

Subtask 1

Subtask 1 (16 points): (Er ,Ec) is reachable in one move.

That means, in particular, that (Sr ,Sc) and (Er ,Ec) are on the same
row/column.

Sr > Er , then move “up”

Sr < Er , then move “down”

Sc > Ec , then move “left”

Sc < Ec , then move “right”

What should X be? X just equals the distance between the two cells.

Alex Tung J183 Editorial 27 Jan 18 8 / 24

Subtask 2

Subtask 2 (11 points): K = 1

You can divide the board into nine parts, using (Sr ,Sc) as center.

Then, write a bunch of ‘if’s :(

To make life easier, observe that:

Observation 1

Horizontal (left/right) moves and vertical (up/down) moves are
independent.

Alex Tung J183 Editorial 27 Jan 18 9 / 24

Subtask 2

Subtask 2 (11 points): K = 1

You can divide the board into nine parts, using (Sr ,Sc) as center.
Then, write a bunch of ‘if’s :(

To make life easier, observe that:

Observation 1

Horizontal (left/right) moves and vertical (up/down) moves are
independent.

Alex Tung J183 Editorial 27 Jan 18 9 / 24

Subtask 2

Subtask 2 (11 points): K = 1

You can divide the board into nine parts, using (Sr ,Sc) as center.

Then, write a bunch of ‘if’s :(

To make life easier, observe that:

Observation 1

Horizontal (left/right) moves and vertical (up/down) moves are
independent.

Alex Tung J183 Editorial 27 Jan 18 9 / 24

Subtask 3

Subtask 3 (25 points): K = 2

In this subtask, there are finally some (non-obvious) decision-making.

By Observation 1, assume that N = 1 (so we are only concerned with
horizontal moves).

Further assume that Sc < Ec (so we need to bring the piece to the
right).

Alex Tung J183 Editorial 27 Jan 18 10 / 24

Subtask 3

Subtask 3 (25 points): K = 2

In this subtask, there are finally some (non-obvious) decision-making.

By Observation 1, assume that N = 1 (so we are only concerned with
horizontal moves).

Further assume that Sc < Ec (so we need to bring the piece to the
right).

Alex Tung J183 Editorial 27 Jan 18 10 / 24

Subtask 3

Subtask 3 (25 points): K = 2

In this subtask, there are finally some (non-obvious) decision-making.

By Observation 1, assume that N = 1 (so we are only concerned with
horizontal moves).

Further assume that Sc < Ec (so we need to bring the piece to the
right).

Alex Tung J183 Editorial 27 Jan 18 10 / 24

Subtask 3

Subtask 3 (25 points): K = 2

In this subtask, there are finally some (non-obvious) decision-making.

By Observation 1, assume that N = 1 (so we are only concerned with
horizontal moves).

Further assume that Sc < Ec (so we need to bring the piece to the
right).

Alex Tung J183 Editorial 27 Jan 18 10 / 24

Subtask 3

Claim 1

Let D := Ec − Sc . Let C := bD2 c.
If D = 1, the optimal solution is right 1.

If D > 1 and is odd, an optimal solution is right 2C ; right 1.

If D is even, the optimal solution is right 2C .

Proof

It is obvious that we cannot do better.

Alex Tung J183 Editorial 27 Jan 18 11 / 24

Subtask 4

Subtask 4 (28 points): (Sr , Sc) = (1, 1)

This is just a “safety net” for those who attempts the full solution :)

If you miss one case, you’ll pass this subtask but not the next one.

Alex Tung J183 Editorial 27 Jan 18 12 / 24

Subtask 4

Subtask 4 (28 points): (Sr , Sc) = (1, 1)

This is just a “safety net” for those who attempts the full solution :)

If you miss one case, you’ll pass this subtask but not the next one.

Alex Tung J183 Editorial 27 Jan 18 12 / 24

Subtask 4

Subtask 4 (28 points): (Sr , Sc) = (1, 1)

This is just a “safety net” for those who attempts the full solution :)

If you miss one case, you’ll pass this subtask but not the next one.

Alex Tung J183 Editorial 27 Jan 18 12 / 24

Subtask 5

Subtask 5 (20 points): No additional constraints

Same as for Subtask 3, we assume first that N = 1 and Sc < Ec .

Again, let D := Ec − Sc , and C := bDK c.
For each move dir X , if X = 1 we say it is a small step; otherwise
we say it consists of X

K big step(s).

Alex Tung J183 Editorial 27 Jan 18 13 / 24

Subtask 5

Subtask 5 (20 points): No additional constraints

Same as for Subtask 3, we assume first that N = 1 and Sc < Ec .

Again, let D := Ec − Sc , and C := bDK c.
For each move dir X , if X = 1 we say it is a small step; otherwise
we say it consists of X

K big step(s).

Alex Tung J183 Editorial 27 Jan 18 13 / 24

Subtask 5

Subtask 5 (20 points): No additional constraints

Same as for Subtask 3, we assume first that N = 1 and Sc < Ec .

Again, let D := Ec − Sc , and C := bDK c.

For each move dir X , if X = 1 we say it is a small step; otherwise
we say it consists of X

K big step(s).

Alex Tung J183 Editorial 27 Jan 18 13 / 24

Subtask 5

Subtask 5 (20 points): No additional constraints

Same as for Subtask 3, we assume first that N = 1 and Sc < Ec .

Again, let D := Ec − Sc , and C := bDK c.
For each move dir X , if X = 1 we say it is a small step; otherwise
we say it consists of X

K big step(s).

Alex Tung J183 Editorial 27 Jan 18 13 / 24

Subtask 5

Subtask 5 (20 points): No additional constraints

Same as for Subtask 3, we assume first that N = 1 and Sc < Ec .

Again, let D := Ec − Sc , and C := bDK c.
For each move dir X , if X = 1 we say it is a small step; otherwise
we say it consists of X

K big step(s).

Note

One move may consist of one small step or many big steps. Do not
confuse the notations!

Alex Tung J183 Editorial 27 Jan 18 13 / 24

Subtask 5

Claim 2

It is optimal to avoid moving left with big steps.

Idea of Proof

Otherwise, we may cancel a “left” big step with a suitable “right” big step
or K suitable “right” small steps, without affecting the validity of the
solution.
Such cancellation will not increase the number of moves.

Therefore, if we make B big steps (to the right), we will need to make
|D − K × B| small steps (could be to the left or to the right).

Alex Tung J183 Editorial 27 Jan 18 14 / 24

Subtask 5

Claim 2

It is optimal to avoid moving left with big steps.

Idea of Proof

Otherwise, we may cancel a “left” big step with a suitable “right” big step
or K suitable “right” small steps, without affecting the validity of the
solution.
Such cancellation will not increase the number of moves.

Therefore, if we make B big steps (to the right), we will need to make
|D − K × B| small steps (could be to the left or to the right).

Alex Tung J183 Editorial 27 Jan 18 14 / 24

Subtask 5

Claim 3

It is optimal to take B = C or B = C + 1 (recall that C := bDK c).

Proof

If B ′ < C , compare with B = C . Number of small steps increases, while
number of moves for the big steps decreases by at most one.
If B ′ > C + 1, compare with B = C + 1. Number of small steps increases,
while number of moves for the big steps does not decrease.

Alex Tung J183 Editorial 27 Jan 18 15 / 24

Subtask 5

Recall that D := Ec − Sc , and C := bDK c.

Two cases to consider: B = C big steps, or B = C + 1 big steps.

Alex Tung J183 Editorial 27 Jan 18 16 / 24

Subtask 5

Recall that D := Ec − Sc , and C := bDK c.
Two cases to consider: B = C big steps, or B = C + 1 big steps.

Alex Tung J183 Editorial 27 Jan 18 16 / 24

Subtask 5

Recall that D := Ec − Sc , and C := bDK c.
Two cases to consider: B = C big steps, or B = C + 1 big steps.

Case 1 (B = C)

If B = 0, an optimal solution is right 1 (D times).

Otherwise, an optimal solution is right K × B; right 1

((D − K × B) times).

Alex Tung J183 Editorial 27 Jan 18 16 / 24

Subtask 5

Case 2 (B = C + 1)

If K ≥ M, we should disregard this case. Otherwise,

if K × B < M, we need 1 + (K × B − D) moves;

if K × B ≥ M, we need 2 + (K × B − D) moves.

Alex Tung J183 Editorial 27 Jan 18 17 / 24

Subtask 5

Case 2 (B = C + 1)

If K ≥ M, we should disregard this case. Otherwise,

if K × B < M, we need 1 + (K × B − D) moves.

if K × B ≥ M, we need 2 + (K × B − D) moves.

Again, it is obvious that the number of moves is optimal.
So, it remains to construct a solution with the given number of moves
(not easy!).

Alex Tung J183 Editorial 27 Jan 18 18 / 24

Subtask 5

Case 2a (B = C + 1, K × B < M)

Set REMAIN := (K × B − D), LOC := Sc , GOAL := Ec .
Then perform the following:

1 while REMAIN > 0 and LOC > 1
move left 1

REMAIN := REMAIN − 1
LOC := LOC − 1

2 move right K × B; LOC := LOC + K × B

3 while LOC > Ec

move left 1

LOC := LOC − 1

Alex Tung J183 Editorial 27 Jan 18 19 / 24

Subtask 5

Case 2b (B = C + 1, K × B ≥ M)

Set REMAIN := (K × B − D), LOC := Sc , GOAL := Ec .
Then perform the following:

1 while REMAIN > 0 and LOC > 1
move left 1

REMAIN := REMAIN − 1
LOC := LOC − 1

2 move right K

3 while REMAIN > 0
move left 1

REMAIN := REMAIN − 1

4 move right K × (B − 1)

Alex Tung J183 Editorial 27 Jan 18 20 / 24

Subtask 5

Finally, choose the case with fewer moves, and find a sequence of moves
as described.

Note

From the construction above, we see that the number of moves is O(K)
with a reasonably small constant.

Alex Tung J183 Editorial 27 Jan 18 21 / 24

Subtask 5

Here are some examples. Let’s dry-run them!

M K Sc Ec

10 10 1 10

8 4 1 8

18 6 2 17

19 6 2 17

10 8 4 9

10 8 5 9

Alex Tung J183 Editorial 27 Jan 18 22 / 24

But this is TOO HARD to code...

My C++ solution has about 70 lines, including 15 lines of headers.

The key is to handle all directions using one single function!

Use a function like void solve 1D(int dim, int S, int E, int

K, string move front, string move back).

Then, if Sr < Er , call solve 1D(N, Sr, Er, K, "right",

"left"); otherwise, call solve 1D(N, N + 1− Sr, N + 1− Er,

K, "left", "right").

Similarly, if Sc < Ec , call solve 1D(M, Sc, Ec, K, "down",

"up"); otherwise, call solve 1D(M, M + 1− Sc, M + 1− Ec, K,

"up", "down").

Essentially, we are flipping the board.

Alex Tung J183 Editorial 27 Jan 18 23 / 24

But this is TOO HARD to code...

My C++ solution has about 70 lines, including 15 lines of headers.

The key is to handle all directions using one single function!

Use a function like void solve 1D(int dim, int S, int E, int

K, string move front, string move back).

Then, if Sr < Er , call solve 1D(N, Sr, Er, K, "right",

"left"); otherwise, call solve 1D(N, N + 1− Sr, N + 1− Er,

K, "left", "right").

Similarly, if Sc < Ec , call solve 1D(M, Sc, Ec, K, "down",

"up"); otherwise, call solve 1D(M, M + 1− Sc, M + 1− Ec, K,

"up", "down").

Essentially, we are flipping the board.

Alex Tung J183 Editorial 27 Jan 18 23 / 24

But this is TOO HARD to code...

My C++ solution has about 70 lines, including 15 lines of headers.

The key is to handle all directions using one single function!

Use a function like void solve 1D(int dim, int S, int E, int

K, string move front, string move back).

Then, if Sr < Er , call solve 1D(N, Sr, Er, K, "right",

"left"); otherwise, call solve 1D(N, N + 1− Sr, N + 1− Er,

K, "left", "right").

Similarly, if Sc < Ec , call solve 1D(M, Sc, Ec, K, "down",

"up"); otherwise, call solve 1D(M, M + 1− Sc, M + 1− Ec, K,

"up", "down").

Essentially, we are flipping the board.

Alex Tung J183 Editorial 27 Jan 18 23 / 24

But this is TOO HARD to code...

My C++ solution has about 70 lines, including 15 lines of headers.

The key is to handle all directions using one single function!

Use a function like void solve 1D(int dim, int S, int E, int

K, string move front, string move back).

Then, if Sr < Er , call solve 1D(N, Sr, Er, K, "right",

"left"); otherwise, call solve 1D(N, N + 1− Sr, N + 1− Er,

K, "left", "right").

Similarly, if Sc < Ec , call solve 1D(M, Sc, Ec, K, "down",

"up"); otherwise, call solve 1D(M, M + 1− Sc, M + 1− Ec, K,

"up", "down").

Essentially, we are flipping the board.

Alex Tung J183 Editorial 27 Jan 18 23 / 24

But this is TOO HARD to code...

My C++ solution has about 70 lines, including 15 lines of headers.

The key is to handle all directions using one single function!

Use a function like void solve 1D(int dim, int S, int E, int

K, string move front, string move back).

Then, if Sr < Er , call solve 1D(N, Sr, Er, K, "right",

"left"); otherwise, call solve 1D(N, N + 1− Sr, N + 1− Er,

K, "left", "right").

Similarly, if Sc < Ec , call solve 1D(M, Sc, Ec, K, "down",

"up"); otherwise, call solve 1D(M, M + 1− Sc, M + 1− Ec, K,

"up", "down").

Essentially, we are flipping the board.

Alex Tung J183 Editorial 27 Jan 18 23 / 24

But this is TOO HARD to code...

My C++ solution has about 70 lines, including 15 lines of headers.

The key is to handle all directions using one single function!

Use a function like void solve 1D(int dim, int S, int E, int

K, string move front, string move back).

Then, if Sr < Er , call solve 1D(N, Sr, Er, K, "right",

"left"); otherwise, call solve 1D(N, N + 1− Sr, N + 1− Er,

K, "left", "right").

Similarly, if Sc < Ec , call solve 1D(M, Sc, Ec, K, "down",

"up"); otherwise, call solve 1D(M, M + 1− Sc, M + 1− Ec, K,

"up", "down").

Essentially, we are flipping the board.

Alex Tung J183 Editorial 27 Jan 18 23 / 24

The End

Questions?

Alex Tung J183 Editorial 27 Jan 18 24 / 24

	Task Description
	Statistics and Comments
	Solution
	How to get 52 points without knowing for-loop
	The full solution

	Implementation Tips

