HKOI Junior Q3 (Shortest Path) Editorial

Alex Tung
alex20030190@yahoo.com.hk

27 January 2018

Table of Contents

(1) Task Description
(2) Statistics and Comments
(3) Solution

- How to get 52 points without knowing for-loop
- The full solution
(4) Implementation Tips

Task Description

- Given a $N \times M$ grid. Also given a parameter K.

Task Description

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell $\left(S_{r}, S_{c}\right)$ and she needs to bring the piece to cell $\left(E_{r}, E_{c}\right)$.

Task Description

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell $\left(S_{r}, S_{c}\right)$ and she needs to bring the piece to cell $\left(E_{r}, E_{c}\right)$.
- For each move, she can move her piece X steps up, down, left, or right. X should equal 1 or a positive integer multiple of K.

Task Description

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell $\left(S_{r}, S_{c}\right)$ and she needs to bring the piece to cell $\left(E_{r}, E_{c}\right)$.
- For each move, she can move her piece X steps up, down, left, or right. X should equal 1 or a positive integer multiple of K.
- Of course, after each step, Alice's piece should remain on the board.

Task Description

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell $\left(S_{r}, S_{c}\right)$ and she needs to bring the piece to cell $\left(E_{r}, E_{c}\right)$.
- For each move, she can move her piece X steps up, down, left, or right. X should equal 1 or a positive integer multiple of K.
- Of course, after each step, Alice's piece should remain on the board.
- Output a shortest sequence of moves, which brings her piece from $\left(S_{r}, S_{c}\right)$ to $\left(E_{r}, E_{c}\right)$.

Sample IO

Sample Output 1
2
right 6
down 1

Sample Output 2

3
right 4
left 1
right 4

Constraints

For all cases:
$1 \leq N, M \leq 10^{9}$

$$
1 \leq K \leq 1000
$$

Points Constraints
$116\left(E_{r}, E_{c}\right)$ is reachable in one move
2 $11 \quad K=1$
$325 \quad K=2$
4 28

$$
\left(S_{r}, S_{c}\right)=(1,1)
$$

5 20 No additional constraints

Statistics

Attempts: 76
Mean: 24.684
Stddev: 22.315
Top scores: 100 (ethening, 1:11), 80 (mtyeung1), 52 (18 contestants) Score distribution:

Comments

- This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))

Comments

- This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))
- Ad-hoc problem

Comments

- This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))
- Ad-hoc problem
- Getting $16+11=27$ points is easy, but full solution requires careful case handling.

Comments

- This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))
- Ad-hoc problem
- Getting $16+11=27$ points is easy, but full solution requires careful case handling.
- It is not easy to code the solution (more on that later).

Subtask 1

Subtask 1 (16 points): $\left(E_{r}, E_{c}\right)$ is reachable in one move.

Subtask 1

Subtask 1 (16 points): $\left(E_{r}, E_{c}\right)$ is reachable in one move.

- That means, in particular, that $\left(S_{r}, S_{c}\right)$ and $\left(E_{r}, E_{c}\right)$ are on the same row/column.

Subtask 1

Subtask 1 (16 points): $\left(E_{r}, E_{c}\right)$ is reachable in one move.

- That means, in particular, that $\left(S_{r}, S_{c}\right)$ and $\left(E_{r}, E_{c}\right)$ are on the same row/column.
- $S_{r}>E_{r}$, then move "up"
- $S_{r}<E_{r}$, then move "down"
- $S_{c}>E_{c}$, then move "left"
- $S_{c}<E_{c}$, then move "right"

Subtask 1

Subtask 1 (16 points): $\left(E_{r}, E_{c}\right)$ is reachable in one move.

- That means, in particular, that $\left(S_{r}, S_{c}\right)$ and $\left(E_{r}, E_{c}\right)$ are on the same row/column.
- $S_{r}>E_{r}$, then move "up"
- $S_{r}<E_{r}$, then move "down"
- $S_{c}>E_{c}$, then move "left"
- $S_{c}<E_{c}$, then move "right"
- What should X be? X just equals the distance between the two cells.

Subtask 2

Subtask 2 (11 points): $K=1$

Subtask 2

Subtask 2 (11 points): $K=1$

- You can divide the board into nine parts, using $\left(S_{r}, S_{c}\right)$ as center.
- Then, write a bunch of 'if's :(

Subtask 2

Subtask 2 (11 points): $K=1$

- You can divide the board into nine parts, using $\left(S_{r}, S_{c}\right)$ as center.
- Then, write a bunch of 'if's :(
- To make life easier, observe that:

Observation 1

Horizontal (left/right) moves and vertical (up/down) moves are independent.

Subtask 3

Subtask 3 (25 points): $K=2$

Subtask 3

Subtask 3 (25 points): $K=2$

- In this subtask, there are finally some (non-obvious) decision-making.

Subtask 3

Subtask 3 (25 points): $K=2$

- In this subtask, there are finally some (non-obvious) decision-making.
- By Observation 1, assume that $N=1$ (so we are only concerned with horizontal moves).

Subtask 3

Subtask 3 (25 points): $K=2$

- In this subtask, there are finally some (non-obvious) decision-making.
- By Observation 1, assume that $N=1$ (so we are only concerned with horizontal moves).
- Further assume that $S_{c}<E_{c}$ (so we need to bring the piece to the right).

Subtask 3

Claim 1

Let $D:=E_{c}-S_{c}$. Let $C:=\left\lfloor\frac{D}{2}\right\rfloor$.

- If $D=1$, the optimal solution is right 1 .
- If $D>1$ and is odd, an optimal solution is right $2 C$; right 1 .
- If D is even, the optimal solution is right $2 C$.

Proof

It is obvious that we cannot do better.

Subtask 4

Subtask 4 (28 points): $\left(S_{r}, S_{c}\right)=(1,1)$

Subtask 4

Subtask 4 (28 points): $\left(S_{r}, S_{c}\right)=(1,1)$

- This is just a "safety net" for those who attempts the full solution :)

Subtask 4

Subtask 4 (28 points): $\left(S_{r}, S_{c}\right)=(1,1)$

- This is just a "safety net" for those who attempts the full solution:)
- If you miss one case, you'll pass this subtask but not the next one.

Subtask 5

Subtask 5 (20 points): No additional constraints

Subtask 5

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that $N=1$ and $S_{c}<E_{c}$.

Subtask 5

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that $N=1$ and $S_{c}<E_{c}$.
- Again, let $D:=E_{c}-S_{c}$, and $C:=\left\lfloor\frac{D}{K}\right\rfloor$.

Subtask 5

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that $N=1$ and $S_{c}<E_{c}$.
- Again, let $D:=E_{c}-S_{c}$, and $C:=\left\lfloor\frac{D}{K}\right\rfloor$.
- For each move $\operatorname{dir} X$, if $X=1$ we say it is a small step; otherwise we say it consists of $\frac{X}{K}$ big step(s).

Subtask 5

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that $N=1$ and $S_{c}<E_{c}$.
- Again, let $D:=E_{c}-S_{c}$, and $C:=\left\lfloor\frac{D}{K}\right\rfloor$.
- For each move $\operatorname{dir} X$, if $X=1$ we say it is a small step; otherwise we say it consists of $\frac{X}{K}$ big step(s).

Note

One move may consist of one small step or many big steps. Do not confuse the notations!

Subtask 5

Claim 2

It is optimal to avoid moving left with big steps.

Idea of Proof

Otherwise, we may cancel a "left" big step with a suitable "right" big step or K suitable "right" small steps, without affecting the validity of the solution.
Such cancellation will not increase the number of moves.

Subtask 5

Claim 2

It is optimal to avoid moving left with big steps.

Idea of Proof

Otherwise, we may cancel a "left" big step with a suitable "right" big step or K suitable "right" small steps, without affecting the validity of the solution.
Such cancellation will not increase the number of moves.

- Therefore, if we make B big steps (to the right), we will need to make $|D-K \times B|$ small steps (could be to the left or to the right).

Subtask 5

Claim 3

It is optimal to take $B=C$ or $B=C+1$ (recall that $\left.C:=\left\lfloor\frac{D}{K}\right\rfloor\right)$.

Proof

If $B^{\prime}<C$, compare with $B=C$. Number of small steps increases, while number of moves for the big steps decreases by at most one.
If $B^{\prime}>C+1$, compare with $B=C+1$. Number of small steps increases, while number of moves for the big steps does not decrease.

Subtask 5

- Recall that $D:=E_{c}-S_{c}$, and $C:=\left\lfloor\frac{D}{K}\right\rfloor$.

Subtask 5

- Recall that $D:=E_{c}-S_{c}$, and $C:=\left\lfloor\frac{D}{K}\right\rfloor$.
- Two cases to consider: $B=C$ big steps, or $B=C+1$ big steps.

Subtask 5

- Recall that $D:=E_{c}-S_{c}$, and $C:=\left\lfloor\frac{D}{K}\right\rfloor$.
- Two cases to consider: $B=C$ big steps, or $B=C+1$ big steps.

Case $1(B=C)$

- If $B=0$, an optimal solution is right 1 (D times).
- Otherwise, an optimal solution is right $K \times B$; right 1 (($D-K \times B)$ times).

Subtask 5

Case $2(B=C+1)$

- If $K \geq M$, we should disregard this case. Otherwise,
- if $K \times B<M$, we need $1+(K \times B-D)$ moves;
- if $K \times B \geq M$, we need $2+(K \times B-D)$ moves.

Subtask 5

Case $2(B=C+1)$

- If $K \geq M$, we should disregard this case. Otherwise,
- if $K \times B<M$, we need $1+(K \times B-D)$ moves.
- if $K \times B \geq M$, we need $2+(K \times B-D)$ moves.

Again, it is obvious that the number of moves is optimal.
So, it remains to construct a solution with the given number of moves (not easy!).

Subtask 5

Case 2a $(B=C+1, K \times B<M)$
Set REMAIN := $(K \times B-D), L O C:=S_{c}, G O A L:=E_{c}$.
Then perform the following:
(1) while REMAIN >0 and LOC >1

$$
\text { move left } 1
$$

REMAIN := REMAIN - 1
LOC := LOC - 1
(2) move right $K \times B ; L O C:=L O C+K \times B$
(3) while LOC $>E_{c}$
move left 1
$L O C:=L O C-1$

Subtask 5

Case $2 \mathrm{~b}(B=C+1, K \times B \geq M)$

Set REMAIN $:=(K \times B-D), L O C:=S_{c}, G O A L:=E_{c}$.
Then perform the following:
(1) while REMAIN >0 and LOC >1

$$
\text { move left } 1
$$

$$
\text { REMAIN }:=\text { REMAIN }-1
$$

$$
\angle O C:=\angle O C-1
$$

(2) move right K
(3) while REMAIN >0
move left 1
REMAIN := REMAIN - 1
(4) move right $K \times(B-1)$

Subtask 5

Finally, choose the case with fewer moves, and find a sequence of moves as described.

Note

From the construction above, we see that the number of moves is $O(K)$ with a reasonably small constant.

Subtask 5

Here are some examples. Let's dry-run them!

M	K	S_{c}	E_{c}
10	10	1	10
8	4	1	8
18	6	2	17
19	6	2	17
10	8	4	9
10	8	5	9

But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.

But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!

But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D (int dim, int S, int E, int K, string move_front, string move_back).

But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).
- Then, if $S_{r}<E_{r}$, call solve_1D (N, S_{r}, E_{r}, K, "right", "left"); otherwise, call solve_1D($N, N+1-S_{r}, N+1-E_{r}$, K, "left", "right").

But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).
- Then, if $S_{r}<E_{r}$, call solve_1D $\left(N, S_{r}, E_{r}, K\right.$, "right", "left"); otherwise, call solve_1D ($N, N+1-S_{r}, N+1-E_{r}$, K, "left", "right").
- Similarly, if $S_{c}<E_{c}$, call solve_1D(M, S_{c}, E_{c}, K, "down", "up"); otherwise, call solve_1D ($M, M+1-S_{c}, M+1-E_{c}, K$, "up", "down").

But this is TOO HARD to code...

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).
- Then, if $S_{r}<E_{r}$, call solve_1D (N, S_{r}, E_{r}, K, "right", "left"); otherwise, call solve_1D ($N, N+1-S_{r}, N+1-E_{r}$, K, "left", "right").
- Similarly, if $S_{c}<E_{c}$, call solve_1D $\left(M, S_{c}, E_{c}, K\right.$, "down", "up"); otherwise, call solve_1D ($M, M+1-S_{c}, M+1-E_{c}, K$, "up", "down").
- Essentially, we are flipping the board.

The End

- Questions?

