HKOI Junior Q3 (Shortest Path) Editorial

Alex Tung alex20030190@yahoo.com.hk

27 January 2018

Alex Tung

27 Jan 18 1 / 24

Solution

- How to get 52 points without knowing for-loop
- The full solution

Implementation Tips

• Given a $N \times M$ grid. Also given a parameter K.

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell (S_r, S_c) and she needs to bring the piece to cell (E_r, E_c) .

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell (S_r, S_c) and she needs to bring the piece to cell (E_r, E_c) .
- For each move, she can move her piece X steps up, down, left, or right. X should equal 1 or a positive integer multiple of K.

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell (S_r, S_c) and she needs to bring the piece to cell (E_r, E_c) .
- For each move, she can move her piece X steps up, down, left, or right. X should equal 1 or a positive integer multiple of K.
- Of course, after each step, Alice's piece should remain on the board.

- Given a $N \times M$ grid. Also given a parameter K.
- Alice's piece starts at cell (S_r, S_c) and she needs to bring the piece to cell (E_r, E_c) .
- For each move, she can move her piece X steps up, down, left, or right. X should equal 1 or a positive integer multiple of K.
- Of course, after each step, Alice's piece should remain on the board.
- Output a shortest sequence of moves, which brings her piece from (S_r, S_c) to (E_r, E_c) .

Sample Input 1

293		
12		
28		

Sample Output 1

2 right 6 down 1

Sample Input 2	
184	
11	
18	

Sample Output 2
3
right 4
left 1
right 4

< □ > < 同 > < 回 > < Ξ > < Ξ

Constraints

For all cases: $1 \leq N, M \leq 10^9$ $1 \leq K \leq 1000$

	Points	Constraints
1	16	$\left(E_{r},E_{c} ight)$ is reachable in one move
2	11	K = 1
3	25	K = 2
4	28	$\left(S_r,S_c ight)=\left(1,1 ight)$
5	20	No additional constraints

< □ > < □ > < □ > < □ > < □ >

Statistics

Attempts: 76 Mean: 24.684 Stddev: 22.315 Top scores: 100 (ethening, 1:11), 80 (mtyeung1), 52 (18 contestants) Score distribution:

• This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))

∃ >

- This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))
- Ad-hoc problem

- This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))
- Ad-hoc problem
- Getting 16 + 11 = 27 points is easy, but full solution requires careful case handling.

- This is the hardest problem in HKOI 2017/18 Junior. (Far easier than J174 though ;))
- Ad-hoc problem
- Getting 16 + 11 = 27 points is easy, but full solution requires careful case handling.
- It is not easy to code the solution (more on that later).

Subtask 1 (16 points): (E_r, E_c) is reachable in one move.

∃ ⊳.

Subtask 1 (16 points): (E_r, E_c) is reachable in one move.

• That means, in particular, that (S_r, S_c) and (E_r, E_c) are on the same row/column.

Subtask 1 (16 points): (E_r, E_c) is reachable in one move.

- That means, in particular, that (S_r, S_c) and (E_r, E_c) are on the same row/column.
- $S_r > E_r$, then move "up"
- $S_r < E_r$, then move "down"
- $S_c > E_c$, then move "left"
- $S_c < E_c$, then move "right"

Subtask 1 (16 points): (E_r, E_c) is reachable in one move.

- That means, in particular, that (S_r, S_c) and (E_r, E_c) are on the same row/column.
- $S_r > E_r$, then move "up"
- $S_r < E_r$, then move "down"
- $S_c > E_c$, then move "left"
- $S_c < E_c$, then move "right"
- What should X be? X just equals the distance between the two cells.

Subtask 2 (11 points): K = 1

(日)

Subtask 2 (11 points): K = 1

- You can divide the board into nine parts, using (S_r, S_c) as center.
- Then, write a bunch of 'if's :(

Subtask 2 (11 points): K = 1

- You can divide the board into nine parts, using (S_r, S_c) as center.
- Then, write a bunch of 'if's :(
- To make life easier, observe that:

Observation 1

Horizontal (left/right) moves and vertical (up/down) moves are independent.

Subtask 3 (25 points): K = 2

< ロ > < 回 > < 回 > < 回 > <</p>

Subtask 3 (25 points): K = 2

• In this subtask, there are finally some (non-obvious) decision-making.

Subtask 3 (25 points): K = 2

- In this subtask, there are finally some (non-obvious) decision-making.
- By Observation 1, assume that N = 1 (so we are only concerned with horizontal moves).

Subtask 3 (25 points): K = 2

- In this subtask, there are finally some (non-obvious) decision-making.
- By Observation 1, assume that N = 1 (so we are only concerned with horizontal moves).
- Further assume that $S_c < E_c$ (so we need to bring the piece to the right).

- Let $D := E_c S_c$. Let $C := \lfloor \frac{D}{2} \rfloor$.
 - If D = 1, the optimal solution is right 1.
 - If D > 1 and is odd, an optimal solution is right 2C; right 1.
 - If D is even, the optimal solution is right 2C.

Proof

It is obvious that we cannot do better.

Subtask 4 (28 points): $(S_r, S_c) = (1, 1)$

Image: A math the second se

Subtask 4 (28 points): $(S_r, S_c) = (1, 1)$

• This is just a "safety net" for those who attempts the full solution :)

Subtask 4 (28 points): $(S_r, S_c) = (1, 1)$

- This is just a "safety net" for those who attempts the full solution :)
- If you miss one case, you'll pass this subtask but not the next one.

Subtask 5 (20 points): No additional constraints

Subtask 5 (20 points): No additional constraints

• Same as for Subtask 3, we assume first that N = 1 and $S_c < E_c$.

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that N = 1 and $S_c < E_c$.
- Again, let $D := E_c S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that N = 1 and $S_c < E_c$.
- Again, let $D := E_c S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.
- For each move dir X, if X = 1 we say it is a small step; otherwise we say it consists of ^X/_K big step(s).

Subtask 5 (20 points): No additional constraints

- Same as for Subtask 3, we assume first that N = 1 and $S_c < E_c$.
- Again, let $D := E_c S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.
- For each move dir X, if X = 1 we say it is a small step; otherwise we say it consists of ^X/_K big step(s).

Note

One move may consist of one small step or **many** big steps. Do not confuse the notations!

It is optimal to avoid moving left with big steps.

Idea of Proof

Otherwise, we may cancel a "left" big step with a suitable "right" big step or K suitable "right" small steps, without affecting the validity of the solution.

Such cancellation will not increase the number of moves.

It is optimal to avoid moving left with big steps.

Idea of Proof

Otherwise, we may cancel a "left" big step with a suitable "right" big step or K suitable "right" small steps, without affecting the validity of the solution.

Such cancellation will not increase the number of moves.

• Therefore, if we make B big steps (to the right), we will need to make $|D - K \times B|$ small steps (could be to the left or to the right).

It is optimal to take
$$B = C$$
 or $B = C + 1$ (recall that $C := \lfloor \frac{D}{K} \rfloor$).

Proof

If B' < C, compare with B = C. Number of small steps increases, while number of moves for the big steps decreases by at most one. If B' > C + 1, compare with B = C + 1. Number of small steps increases, while number of moves for the big steps does not decrease. • Recall that $D := E_c - S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.

(日)

- Recall that $D := E_c S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.
- Two cases to consider: B = C big steps, or B = C + 1 big steps.

- Recall that $D := E_c S_c$, and $C := \lfloor \frac{D}{K} \rfloor$.
- Two cases to consider: B = C big steps, or B = C + 1 big steps.

Case 1 (B = C)

- If B = 0, an optimal solution is right 1 (D times).
- Otherwise, an optimal solution is right $K \times B$; right 1 $((D K \times B) \text{ times}).$

(本語)と (4)

Case 2 (B = C + 1)

- If $K \ge M$, we should disregard this case. Otherwise,
- if $K \times B < M$, we need $1 + (K \times B D)$ moves;
- if $K \times B \ge M$, we need $2 + (K \times B D)$ moves.

Case 2 (B = C + 1)

• If $K \ge M$, we should disregard this case. Otherwise,

- if $K \times B < M$, we need $1 + (K \times B D)$ moves.
- if $K \times B \ge M$, we need $2 + (K \times B D)$ moves.

Again, it is obvious that the number of moves is optimal. So, it remains to construct a solution with the given number of moves (not easy!).

Case 2a (B = C + 1, $K \times B < M$)

```
Set REMAIN := (K \times B - D), LOC := S_c, GOAL := E_c.
Then perform the following:

• while REMAIN > 0 and LOC > 1
```

```
move left 1

REMAIN := REMAIN - 1

LOC := LOC - 1
```

2 move right $K \times B$; $LOC := LOC + K \times B$

• while $LOC > E_c$ move left 1 LOC := LOC - 1

< ∃ >

Case 2b (B = C + 1, $K \times B \ge M$)

```
Set REMAIN := (K \times B - D), LOC := S_c, GOAL := E_c.
```

Then perform the following:

```
• while REMAIN > 0 and LOC > 1
```

```
move left 1

REMAIN := REMAIN - 1

LOC := LOC - 1
```

2 move right K

```
while REMAIN > 0
move left 1
REMAIN := REMAIN - 1
```

```
• move right K \times (B-1)
```

Finally, choose the case with fewer moves, and find a sequence of moves as described.

Note

From the construction above, we see that the number of moves is O(K) with a reasonably small constant.

Here are some examples. Let's dry-run them!

M	K	S _c	E _c
10	10	1	10
8	4	1	8
18	6	2	17
19	6	2	17
10	8	4	9
10	8	5	9

• My C++ solution has about 70 lines, including 15 lines of headers.

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).
- Then, if $S_r < E_r$, call solve_1D(N, S_r , E_r , K, "right", "left"); otherwise, call solve_1D(N, $N + 1 S_r$, $N + 1 E_r$, K, "left", "right").

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).
- Then, if $S_r < E_r$, call solve_1D(N, S_r , E_r , K, "right", "left"); otherwise, call solve_1D(N, $N + 1 S_r$, $N + 1 E_r$, K, "left", "right").
- Similarly, if $S_c < E_c$, call solve_1D(M, S_c , E_c , K, "down", "up"); otherwise, call solve_1D(M, $M + 1 S_c$, $M + 1 E_c$, K, "up", "down").

(4) E (4) (4) E (4)

- My C++ solution has about 70 lines, including 15 lines of headers.
- The key is to handle all directions using one single function!
- Use a function like void solve_1D(int dim, int S, int E, int K, string move_front, string move_back).
- Then, if $S_r < E_r$, call solve_1D(N, S_r , E_r , K, "right", "left"); otherwise, call solve_1D(N, $N + 1 S_r$, $N + 1 E_r$, K, "left", "right").
- Similarly, if $S_c < E_c$, call solve_1D(M, S_c , E_c , K, "down", "up"); otherwise, call solve_1D(M, $M + 1 S_c$, $M + 1 E_c$, K, "up", "down").
- Essentially, we are flipping the board.

(4) E (4) (4) E (4)

The End

• Questions?

メロト メロト メヨト メヨ