J182－Rope

Percy Wong \｛percywtc\}

The Problem

ILLEGAL
Cell not covered

OK
3 ropes used

ILLEGAL
Rope covers painted cell

OK
4 ropes used

ILLEGAL Rope overlaps
with itself

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

ILLEGAL
Rope overlaps with another rope

SCORING

ILLEGAL or $\mathbf{M}>\mathbf{R}+\mathbf{C}+\mathbf{N}$	0%
NICE（i．e．$N+1<\mathrm{M} \leq \mathrm{R}+\mathrm{C}+\mathrm{N})$	60%
EXCELLENT（i．e． $\mathrm{M} \leq \mathrm{N}+1$ ）	100%

SUBTASKS

For all cases：
$1 \leq R, C \leq 300$
$0 \leq N<R \times C$
Points Constraints
1

8	$R=C=2$
	$N=0$
18	$R=1$
21	N

453 No additional constraints

Background

Problem Idea By－percywtc

Testdata By
－percywtc；microtony

Initial version of this problem is a bit harder than the current version This harder version will be discussed later on

Statistics

0 points $\quad 23+6+1+0=30$
8 points $\quad 7+4+4+0=15$
29 points $\quad 9+9+8+2=28$
47 points $0+1+2+3=6$
100 points $0+0+0+3=3$

First solved by mtyeung1 at 1h 17m 44s

SUBTASKS

For all cases：		
$1 \leq R, C \leq 300$		
$0 \leq N<R \times C$		
	Points	Constraints
1	8	$R=C=2$
		$N=0$
2	18	$R=1$
3	21	$N=0$
4	53	No additiona

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 1 －The First Subtask

8 points for solving a single case $-\mathrm{R}=\mathrm{C}=2, \mathrm{~N}=0$

INPUT

220

1			1	
4			4	
1	1	OR	2	1
1	2		2	2
2	2		1	2
2	1		1	1

1				1	
4			4		
1	1	OR	1	2	
2	1		2	2	
2	2		2	1	
1	2		1	1	

1					
4			4		
1	2	OR	2	2	
1	1		2	1	
2	1		1	1	
2	2		1	2	

$\begin{array}{llllll}1 & & & & 1 & \\ 4 & & & 4 & \\ 2 & 1 & \text { OR } & 2 & 2 \\ 1 & 1 & & 1 & 2 \\ 1 & 2 & & 1 & 1 \\ 2 & 2 & & 2 & 1\end{array}$

Solution 1 －The First Subtask

This solution can only solve Subtask 1 with $\mathbf{M}=\mathbf{1}$ rope used

Subtask	Score	Max Score
1	8	8
2	0	18
3	0	21
4	0	53
Total	$\mathbf{8}$	$\mathbf{1 0 0}$

Solution 1 －The First Subtask

PSEUDOCODE

PrintLine（1）
PrintLine（4）
PrintLine（1 1）
PrintLine（1 2）
PrintLine（2 2）
PrintLine（2 1）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 2 －Dots

Simply，for each unoccupied cell，place a rope

INPUT

334
13
21
23
32

OUTPUT

5
1
11
1
12

INPUT

337
11
12
13
22

OUTPUT

2
1
21
1
33

Solution 2 - Dots

In general, this solution needs $\mathbf{M}=\mathbf{R} \times \mathbf{C}-\mathbf{N}$ ropes
Worst case is when $\mathbf{N}=\mathbf{0}$, which requires $\mathbf{M}=\mathbf{R} \times \mathbf{C}$ ropes
For Subtask 1, not worse than NICE (i.e. $\mathrm{M} \leq \mathrm{R}+\mathrm{C}+\mathrm{N}) \quad[4 \leq 2+2+0]$
For Subtask 2, not worse than NICE (i.e. $\mathrm{M} \leq \mathrm{R}+\mathrm{C}+\mathrm{N}) \quad[\mathrm{C} \leq 1+\mathrm{C}+0]$
For Subtask 3 and 4 , may reach $\mathrm{M}>\mathrm{R}+\mathrm{C}+\mathrm{N}$
$[R \times C>R+C+0]$

Subtask	Score	Max Score
1	4.8	8
2	10.8	18
3	0	21
4	0	53
Total	$\mathbf{1 5 . 6}$	$\mathbf{1 0 0}$

Solution 2 －Dots

PSEUDOCODE（For Subtask 2 Only）

```
For i = 1 .. N
    Read(x, y)
    A[y] = True
PrintLine(C - N)
For i = 1 .. C
    If (A[1][i] = False)
    PrintLine(1)
    PrintLine('1 ', i)
```

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 3 －Snake

For the entire grid empty（ $\mathbf{N}=\mathbf{0}$ in Subtask 3），
We can only use $\mathbf{M}=\mathbf{N + 1}=\mathbf{1}$ rope to fill the whole grid

INPUT

OUTPUT

Solution 3 －Snake

This solution always need $\mathbf{M}=1$ ropes，
And it is only suitable for solving $\mathbf{N}=\mathbf{0}$ cases
For Subtask 1 and 3，it is always an EXCELLENT placement（i．e． $\mathrm{M} \leq \mathrm{N}+1$ ） This solution is not suitable for Subtask 2 and 4

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask	Score	Max Score
1	8	8
2	0	18
3	21	21
4	0	53
Total	$\mathbf{2 9}$	$\mathbf{1 0 0}$

Solution 4 －Long Rope in Interval

For $\mathbf{R}=1$（Subtask 2），

optimal way is for each consecutive unoccupied interval，place a long rope It is easy to see that this is the only optimal way

INPUT

OUTPUT

					\sum	3		\square		\checkmark

3
13
17
18
110
2
11
12
3
14
15
－1 香港電腦奧林匹克競賽

Solution 4 －Long Rope in Interval

This solution needs at most $\mathbf{M}=\mathbf{N}+1$ ropes
as \mathbf{N} obstacles can divide the row into no more than $\mathbf{N}+1$ intervals Worst case is when $\mathbf{N}=\mathbf{0}$

For Subtask 2，must be EXCELLENT（i．e． $\mathrm{M} \leq \mathrm{N}+1$ ）

$$
[N+1 \leq N+1]
$$

This solution is not applicable to Subtask 1， 3 and 4

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Subtask	Score	Max Score
1	0	8
2	18	18
3	0	21
4	0	53
Total	$\mathbf{1 8}$	$\mathbf{1 0 0}$

Solutions Summary

| Solutions | | $\mathbf{1}$－First Sub | 2－Dots | 3－Snakes | 4－Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subtask | Max Score | | Score | | |
| 1 | 8 | 8 | 4.8 | 8 | 0 |
| 2 | 18 | 0 | 10.8 | 0 | 18 |
| 3 | 21 | 0 | 0 | 21 | 0 |
| 4 | 53 | 0 | 0 | 0 | 0 |
| Total | $\mathbf{1 0 0}$ | $\mathbf{8}$ | $\mathbf{1 5 . 6}$ | $\mathbf{2 9}$ | $\mathbf{1 8}$ |

Score
8
18
21
0
47

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 4 －Long Rope in Interval

PSEUDOCODE（For Subtask 2 Only）

Count $=0$
$A[0]=A[C+1]=$ True
For $i=0 \ldots C$
If（A［i］AND A［i＋1］） Count＋＋
PrintLine（N＋ 1 －Count）

```
For i = 0 .. C
    If (A[i] AND NOT(A[i+1]))
        j = i + 1
        While (j<C+1 AND A[j]=False)
        j++
    PrintLine(j - i)
    For k = i .. j
        PrintLine('1 ', k)
    i = k + 1
```

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Solution 5 －Copies of Solution 4

We can consider the each row separately
For each row，simply apply Solution 4 once

INPUT

OUTPUT

		\％				x	\times		x
＊		－	\times	\times					
		－	x	\times	\times	，		＊	

Solution 5 －Copies of Solution 4

This solution needs at most $\mathbf{M}=\mathbf{R +} \mathbf{N}$ ropes
\mathbf{n} obstacles can divide a row into no more than $\mathbf{n + 1}$ intervals
So，All \mathbf{R} rows have in total no more than $\mathbf{N}+\mathbf{R}$ intervals
For Subtask 2，must be EXCELLENT（i．e． $\mathrm{M} \leq \mathrm{N}+1$ ）
$[\mathrm{N}+1 \leq \mathrm{N}+1]$
For Subtask 1， 3 and 4，ast least NICE（i．e．$M \leq R+C+N) \quad[N+R \leq R+C+N]$

Subtask	Score	Max Score
1	4.8	8
2	18	18
3	12.6	21
4	31.8	53
Total	$\mathbf{6 7 . 2}$	$\mathbf{1 0 0}$

Solutions Summary

Solution 6 －Mix of Solution 3 \＆ 4

We can consider the snake in Solution 3 as a long line Using Solution 4 －Long Rope in Interval on this long line

INPUT

PROCESS

OUTPUT

Solution 6 - Mix of Subtask 3 \& 4

This solution considers a single long line with \mathbf{N} obstacles
As mentioned in Solution 4, this requires at most $\mathbf{M}=\mathbf{N}+1$ ropes
For all Subtasks, it is always EXCELLENT (i.e. $\mathrm{M} \leq \mathrm{N}+1$)
$[N+1 \leq N+1]$

Subtask	Score	Max Score
1	8	8
2	18	18
3	21	21
4	53	53
Total	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

Summary

This task does not require you to solve every case with optimal arrangement， But just＂good enough＂way

It is always a good idea to think of some small or special cases at first It may lead you to develop a better solution

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Other Solution－Depth First Search（DFS）

Choose an unoccupied cell， Repeatedly walking to any unoccupied cell next to it until cannot do so Repeat the whole process with another rope if there are still unoccupied cells
The score depends on your implementation：

Subtask	Score	Max Score		Subtask	Score	Max Score
1	8	8		1	8	8
2	18	18		2	18	18
3	21	21		3	21	21
4	31.8	53		4	0	53
Total	$\mathbf{7 7 . 8}$	$\mathbf{1 0 0}$		Total	$\mathbf{4 7}$	$\mathbf{1 0 0}$

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

Harder Version of the Problem

CONSTRAINTS

$\mathrm{R}, \mathrm{C} \geq 2$
$\mathbf{R} \times \mathbf{C}$ is even
$\mathrm{N} \geq 1$
Only \mathbf{N} ropes can be used

Can you solve it？：）

香港電腦奧林匹克競賽
Hong Kong Olympiad in Informatics

