J181 Wings and Nuggets

Author: Tony Wong
Speaker: Steven Lau

January 27, 2018

Statistics

Problem Statement

Food	Price
pack of 2 Wings	W_{2}
pack of 4 Wings	W_{4}
pack of 4 Nuggets	N_{4}
pack of 6 Nuggets	N_{6}
pack of 9 Nuggets	N_{9}

- Subtask 1: minimum cost to buy X Wings
- Subtask 2: maximum number of Wings with $\$ Y$
- Subtask 3: minimum cost to buy X Nuggets
- Subtask 4: maximum number of Nuggets with $\$ Y$

Subtask 1: minimum cost to buy X Wings

Constraints:

- $1 \leq W_{2}<W_{4} \leq 100$
- $1 \leq X \leq 100$

Suppose we should buy k_{2} packs of 2 Wings and k_{4} packs of 4 Wings. Then,

- $0 \leq k_{2} \leq\left\lceil\frac{X}{2}\right\rceil$
- $0 \leq k_{4} \leq\left\lceil\frac{X}{4}\right\rceil$
- $2 k_{2}+4 k_{4} \geq X$
- Want to minimize
$k_{2} W_{2}+k_{4} W_{4}$

Subtask 1: minimum cost to buy X Wings

Constraints:

- $1 \leq W_{2}<W_{4} \leq 100$
- $1 \leq X \leq 100$

Suppose we should buy k_{2} packs of 2 Wings and k_{4} packs of 4 Wings. Then,

- $0 \leq k_{2} \leq\left\lceil\frac{X}{2}\right\rceil$
- $0 \leq k_{4} \leq\left\lceil\frac{X}{4}\right\rceil$
- $2 k_{2}+4 k_{4} \geq X$
- Want to minimize $k_{2} W_{2}+k_{4} W_{4}$

```
ans }\leftarrow
for }\mp@subsup{k}{4}{}\leftarrow0\mathrm{ to }\lceil\frac{X}{4}\rceil\mathrm{ do
    for }\mp@subsup{k}{2}{}\leftarrow0\mathrm{ to }\lceil\frac{X}{2}\rceil\mathrm{ do
                cost \leftarrow}\leftarrow\mp@subsup{k}{2}{}\mp@subsup{W}{2}{}+\mp@subsup{k}{4}{}\mp@subsup{W}{4}{
                if }2\mp@subsup{k}{2}{}+4\mp@subsup{k}{4}{}\geqX\mathrm{ then
                ans \leftarrow \leftarrowmin(ans, cost)
                end if
            end for
end for
output ans
```

Time complexity: $O\left(X^{2}\right)$

Subtask 1: minimum cost to buy X Wings

Constraints:

- $1 \leq W_{2}<W_{4} \leq 100$
- $1 \leq X \leq 100$

Suppose we should buy k_{2} packs of 2 Wings and k_{4} packs of 4 Wings. Then,

- $0 \leq k_{2} \leq\left\lceil\frac{X}{2}\right\rceil$
- $0 \leq k_{4} \leq\left\lceil\frac{X}{4}\right\rceil$
- $2 k_{2}+4 k_{4} \geq X$

Solution 2: Exhaustion

```
ans }\leftarrow
for }\mp@subsup{k}{4}{}\leftarrow0\mathrm{ to }\lceil\frac{X}{4}\rceil\mathrm{ do
    k
    cost \leftarrow}\leftarrow\mp@subsup{k}{2}{}\mp@subsup{W}{2}{}+\mp@subsup{k}{4}{}\mp@subsup{W}{4}{
    ans }\leftarrow\operatorname{min}(ans,cost
end for
output ans
```

Time complexity: $O(X)$

- Want to minimize
$k_{2} W_{2}+k_{4} W_{4}$

Subtask 1: minimum cost to buy X Wings

Constraints:

- $1 \leq W_{2}<W_{4} \leq 100$
- $1 \leq X \leq 100$

Suppose we should buy k_{2} packs of 2 Wings and k_{4} packs of 4 Wings. Then,

- $0 \leq k_{2} \leq\left\lceil\frac{X}{2}\right\rceil$
- $0 \leq k_{4} \leq\left\lceil\frac{X}{4}\right\rceil$
- $2 k_{2}+4 k_{4} \geq X$
- Want to minimize
$k_{2} W_{2}+k_{4} W_{4}$

Solution 3: Math

- Buy W_{2} only
- If $W_{4} \leq 2 W_{2}$, replace every two W_{2} with a W_{4}

Time complexity: $O(1)$

Subtask 2: maximum number of Wings with $\$ Y$

Constraints:

- $1 \leq W_{2}<W_{4} \leq 100$
- $1 \leq Y \leq 10000$

Suppose we should buy k_{2} packs of 2 Wings and k_{4} packs of 4
Wings. Then,

- $0 \leq k_{2} W_{2}+k_{4} W_{4} \leq Y$
- Want to maximize $2 k_{2}+4 k_{4}$

Subtask 2: maximum number of Wings with $\$ Y$

Constraints:

- $1 \leq W_{2}<W_{4} \leq 100$
- $1 \leq Y \leq 10000$

Suppose we should buy k_{2} packs of 2 Wings and k_{4} packs of 4 Wings. Then,

- $0 \leq k_{2} W_{2}+k_{4} W_{4} \leq Y$
- Want to maximize $2 k_{2}+4 k_{4}$

Solution 1: Exhaustion
ans $\leftarrow 0$
for $k_{4} \leftarrow 0$ to $\left\lfloor\frac{Y}{W_{4}}\right\rfloor$ do

$$
k_{2} \leftarrow \max \left(0,\left\lfloor\frac{Y-k_{4} W_{4}}{W_{2}}\right\rfloor\right)
$$

wings $\leftarrow 2 k_{2}+4 k_{4}$ ans $\leftarrow \max ($ ans, wings $)$
end for
output ans
Time complexity: $O(Y)$

Subtask 2: maximum number of Wings with $\$ Y$

Constraints:

- $1 \leq W_{2}<W_{4} \leq 100$
- $1 \leq Y \leq 10000$

Suppose we should buy k_{2} packs of 2 Wings and k_{4} packs of 4 Wings. Then,

- $0 \leq k_{2} W_{2}+k_{4} W_{4} \leq Y$
- Want to maximize $2 k_{2}+4 k_{4}$

Solution 2: Math

- If $W_{4} \geq 2 W_{2}$, only buy W_{2};
- Otherwise, only buy W_{4} plus maybe one W_{2}

Time complexity: $O(1)$

Subtask 3: minimum cost to buy X Nuggets

Constraints:

- $1 \leq N_{4}<N_{6}<N_{9} \leq 100$
- $1 \leq X \leq 100$

Suppose we should buy k_{4} packs
of 4 Nuggets, k_{6} packs of 6
Nuggets and k_{9} packs of 9
Nuggets. Then,

- $0 \leq k_{4} \leq\left\lceil\frac{X}{4}\right\rceil$
- $0 \leq k_{6} \leq\left\lceil\frac{X}{6}\right\rceil$
- $0 \leq k_{9} \leq\left\lceil\frac{X}{9}\right\rceil$
- $4 k_{4}+6 k_{6}+9 k_{9} \geq X$
- Want to minimize

$$
k_{4} N_{4}+k_{6} N_{6}+k_{9} N_{9}
$$

Subtask 3: minimum cost to buy X Nuggets

Constraints:

- $1 \leq N_{4}<N_{6}<N_{9} \leq 100$
- $1 \leq X \leq 100$

Suppose we should buy k_{4} packs of 4 Nuggets, k_{6} packs of 6 Nuggets and k_{9} packs of 9 Nuggets. Then,

- $0 \leq k_{4} \leq\left\lceil\frac{X}{4}\right\rceil$
- $0 \leq k_{6} \leq\left\lceil\frac{X}{6}\right\rceil$
- $0 \leq k_{9} \leq\left\lceil\frac{X}{9}\right\rceil$
- $4 k_{4}+6 k_{6}+9 k_{9} \geq X$
- Want to minimize

$$
k_{4} N_{4}+k_{6} N_{6}+k_{9} N_{9}
$$

Solution 1: Naive Exhaustion similar to subtask 1, with one more nested for-loop
Time complexity: $O\left(X^{3}\right)$ or $O\left(X^{2}\right)$

Subtask 3: minimum cost to buy X Nuggets

Solution 2: Least Common Multiple

- Unit prices: $\frac{N_{4}}{4}, \frac{N_{6}}{6}, \frac{N_{9}}{9}$
- Assume that N_{4} is the cheapest in terms of unit price
- Claim: in an optimal solution,
- $0 \leq k_{6} \leq 5$
- $0 \leq k_{9} \leq 3$
- Why? Because we can replace every $6 N_{6}$ (or $4 N_{9}$) with $9 N_{4}$ without worsening our solution
- Exhaut k_{6} and k_{9}, calculate k_{4}
- Time complexity: $O\left(\frac{\mathrm{LCM}(4,6,9)^{3-1}}{4 \times 6 \times 9} \times 4\right)=O(6 * 4)=O(1)$

Subtask 4: maximum number of Nuggets with $\$ Y$

Constraints:

- $1 \leq N_{4}<N_{6}<N_{9} \leq 100$
- $1 \leq Y \leq 10000$

Suppose we should buy k_{4} packs
of 4 Nuggets, k_{6} packs of 6
Nuggets and k_{9} packs of 9
Nuggets. Then,

- $0 \leq k_{4} N_{4}+k_{6} N_{6}+k_{9} N_{9} \leq Y$
- Want to maximize
$4 k_{4}+6 k_{6}+9 k_{9}$

Subtask 4: maximum number of Nuggets with $\$ Y$

Constraints:

- $1 \leq N_{4}<N_{6}<N_{9} \leq 100$
- $1 \leq Y \leq 10000$

Suppose we should buy k_{4} packs of 4 Nuggets, k_{6} packs of 6 Nuggets and k_{9} packs of 9 Nuggets. Then,

Solution 1: Exhaustion
Similar to subtask 2, with one more nested for-loop
Time complexity: $O\left(Y^{2}\right)$
Time limit exceeded

- $0 \leq k_{4} N_{4}+k_{6} N_{6}+k_{9} N_{9} \leq Y$
- Want to maximize $4 k_{4}+6 k_{6}+9 k_{9}$

Subtask 4: maximum number of Nuggets with $\$ Y$

Constraints:

- $1 \leq N_{4}<N_{6}<N_{9} \leq 100$
- $1 \leq Y \leq 10000$

Solution 2: Exhaustion
Exhaust $k 4$ and calculate $k 6$ and $k 9$? Need to use LCM again. Better directly go for the $O(1)$ solution. Nuggets. Then,

- $0 \leq k_{4} N_{4}+k_{6} N_{6}+k_{9} N_{9} \leq Y$
- Want to maximize $4 k_{4}+6 k_{6}+9 k_{9}$

Subtask 4: maximum number of Nuggets with $\$ Y$

Constraints:

- $1 \leq N_{4}<N_{6}<N_{9} \leq 100$
- $1 \leq Y \leq 10000$

Solution 3: Math

- Similar to subtask 3

Suppose we should buy k_{4} packs of 4 Nuggets, k_{6} packs of 6 Nuggets and k_{9} packs of 9 Nuggets. Then,

- $0 \leq k_{4} N_{4}+k_{6} N_{6}+k_{9} N_{9} \leq Y$
- If N_{4} is the cheapest in terms of unit price, exhaust $0 \leq k_{6} \leq 5$ and $0 \leq k_{9} \leq 3$, calculate k_{4}
- Time complexity: $O(1)$
- Want to maximize $4 k_{4}+6 k_{6}+9 k_{9}$

