J181 Wings and Nuggets

Author: Tony Wong Speaker: Steven Lau

January 27, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Statistics

Problem Statement

Food	Price
pack of 2 Wings	W_2
pack of 4 Wings	W_4
pack of 4 Nuggets	N_4
pack of 6 Nuggets	N_6
pack of 9 Nuggets	N_9

- Subtask 1: minimum cost to buy X Wings
- Subtask 2: maximum number of Wings with \$Y
- Subtask 3: minimum cost to buy X Nuggets
- Subtask 4: maximum number of Nuggets with \$Y

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Constraints:

- ▶ $1 \le W_2 < W_4 \le 100$
- ▶ $1 \le X \le 100$

Suppose we should buy k_2 packs of 2 Wings and k_4 packs of 4 Wings. Then,

•
$$0 \le k_2 \le \lceil \frac{X}{2} \rceil$$

• $0 \le k_4 \le \lceil \frac{X}{4} \rceil$

- ► $2\mathbf{k}_2 + 4\mathbf{k}_4 \ge X$
- Want to minimize
 k₂W₂ + k₄W₄

Constraints:

▶
$$1 \le W_2 < W_4 \le 100$$

▶ $1 \le X \le 100$

Suppose we should buy k_2 packs of 2 Wings and k_4 packs of 4 Wings. Then,

•
$$0 \le k_2 \le \lceil \frac{X}{2} \rceil$$

• $0 \le k_4 \le \lceil \frac{X}{4} \rceil$

$$\blacktriangleright 2\mathbf{k}_2 + 4\mathbf{k}_4 \ge \mathbf{X}$$

► Want to minimize k₂W₂ + k₄W₄ Solution 1: Naive Exhaustion

$$\begin{array}{l} \operatorname{ans} \leftarrow \infty \\ \operatorname{for} \ k_4 \leftarrow 0 \ \operatorname{to} \ \left\lceil \frac{X}{4} \right\rceil \operatorname{do} \\ \operatorname{for} \ k_2 \leftarrow 0 \ \operatorname{to} \ \left\lceil \frac{X}{2} \right\rceil \operatorname{do} \\ \operatorname{cost} \leftarrow k_2 W_2 + k_4 W_4 \\ \operatorname{if} \ 2k_2 + 4k_4 \ge X \ \operatorname{then} \\ \operatorname{ans} \leftarrow \min(\operatorname{ans}, \operatorname{cost}) \\ \operatorname{end} \ \operatorname{if} \\ \operatorname{end} \ \operatorname{for} \\ \operatorname{end} \ \operatorname{for} \\ \operatorname{output} \ \operatorname{ans} \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Time complexity: $O(X^2)$

Constraints:

▶
$$1 \le W_2 < W_4 \le 100$$

▶
$$1 \le X \le 100$$

Suppose we should buy k_2 packs of 2 Wings and k_4 packs of 4 Wings. Then,

•
$$0 \le k_2 \le \lceil \frac{X}{2} \rceil$$

• $0 \le k_4 \le \lceil \frac{X}{4} \rceil$

►
$$2\mathbf{k}_2 + 4\mathbf{k}_4 \ge \mathbf{X}$$

► Want to minimize k₂W₂ + k₄W₄ Solution 2: Exhaustion

ans
$$\leftarrow \infty$$

for $k_4 \leftarrow 0$ to $\lceil \frac{X}{4} \rceil$ do
 $k_2 \leftarrow \max(0, \lceil \frac{X - 4k_4}{2} \rceil)$
 $cost \leftarrow k_2 W_2 + k_4 W_4$
ans $\leftarrow \min(ans, cost)$
end for
output ans

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Time complexity: O(X)

Constraints:

- ▶ $1 \le W_2 < W_4 \le 100$
- ▶ $1 \le X \le 100$

Suppose we should buy k_2 packs of 2 Wings and k_4 packs of 4 Wings. Then,

•
$$0 \le k_2 \le \lceil \frac{X}{2} \rceil$$

• $0 \le k_4 \le \lceil \frac{X}{4} \rceil$

- ► $2\mathbf{k}_2 + 4\mathbf{k}_4 \ge X$
- Want to minimize
 k₂W₂ + k₄W₄

Solution 3: Math

- ► Buy W₂ only
- If $W_4 \leq 2W_2$, replace every two W_2 with a W_4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Time complexity: O(1)

Subtask 2: maximum number of Wings with \$Y

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Constraints:

- ▶ $1 \le W_2 < W_4 \le 100$
- ▶ $1 \le Y \le 10000$

Suppose we should buy k_2 packs of 2 Wings and k_4 packs of 4 Wings. Then,

- $\triangleright \ 0 \le \mathbf{k}_2 \mathbf{W}_2 + \mathbf{k}_4 \mathbf{W}_4 \le \mathbf{Y}$
- Want to maximize $2k_2 + 4k_4$

Subtask 2: maximum number of Wings with \$Y

Constraints:

- ▶ $1 \le W_2 < W_4 \le 100$
- ▶ $1 \le Y \le 10000$

Suppose we should buy k_2 packs of 2 Wings and k_4 packs of 4 Wings. Then,

 $\triangleright \ 0 \le k_2 W_2 + k_4 W_4 \le Y$

• Want to maximize $2k_2 + 4k_4$

Solution 1: Exhaustion $ans \leftarrow 0$ for $k_4 \leftarrow 0$ to $\lfloor \frac{Y}{W_4} \rfloor$ do $k_2 \leftarrow \max(0, \lfloor \frac{Y - k_4 W_4}{W_2} \rfloor)$ wings $\leftarrow 2k_2 + 4k_4$ ans $\leftarrow \max(ans, wings)$ end for output ans

Time complexity: O(Y)

Subtask 2: maximum number of Wings with \$Y

Constraints:

- ▶ $1 \le W_2 < W_4 \le 100$
- ▶ $1 \le Y \le 10000$

Suppose we should buy k_2 packs of 2 Wings and k_4 packs of 4 Wings. Then,

- $\triangleright \ 0 \le k_2 W_2 + k_4 W_4 \le Y$
- Want to maximize $2k_2 + 4k_4$

Solution 2: Math

- If $W_4 \ge 2W_2$, only buy W_2 ;
- ► Otherwise, only buy W₄ plus maybe one W₂

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Time complexity: O(1)

Subtask 3: minimum cost to buy X Nuggets

Constraints:

- $1 \le N_4 < N_6 < N_9 \le 100$
- ▶ $1 \le X \le 100$

Suppose we should buy k_4 packs of 4 Nuggets, k_6 packs of 6 Nuggets and k_9 packs of 9 Nuggets. Then,

- ▶ $0 \le k_4 \le \lceil \frac{X}{4} \rceil$
- ► $0 \le k_6 \le \lceil \frac{X}{6} \rceil$
- $\blacktriangleright \ 0 \le k_9 \le \left\lceil \frac{X}{9} \right\rceil$
- ► $4k_4 + 6k_6 + 9k_9 \ge X$
- Want to minimize $k_4N_4 + k_6N_6 + k_9N_9$

Subtask 3: minimum cost to buy X Nuggets

Constraints:

- $1 \le N_4 < N_6 < N_9 \le 100$
- ▶ $1 \le X \le 100$

Suppose we should buy k_4 packs of 4 Nuggets, k_6 packs of 6 Nuggets and k_9 packs of 9 Nuggets. Then,

- ▶ $0 \le k_4 \le \lceil \frac{X}{4} \rceil$
- $0 \le k_6 \le \left\lceil \frac{X}{6} \right\rceil$
- $\bullet \ 0 \le k_9 \le \left\lceil \frac{X}{9} \right\rceil$
- ► $4k_4 + 6k_6 + 9k_9 \ge X$
- Want to minimize $k_4N_4 + k_6N_6 + k_9N_9$

Solution 1: Naive Exhaustion similar to subtask 1, with one more nested for-loop Time complexity: $O(X^3)$ or $O(X^2)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Subtask 3: minimum cost to buy X Nuggets

Solution 2: Least Common Multiple

• Unit prices:
$$\frac{N_4}{4}$$
, $\frac{N_6}{6}$, $\frac{N_9}{9}$

- Assume that N_4 is the cheapest in terms of unit price
- Claim: in an optimal solution,

•
$$0 \le k_6 \le 5$$

•
$$0 \le k_9 \le 3$$

- ▶ Why? Because we can replace every 6 N₆ (or 4 N₉) with 9 N₄ without worsening our solution
- Exhaut k_6 and k_9 , calculate k_4

• Time complexity:
$$O(\frac{\mathsf{LCM}(4,6,9)^{3-1}}{4 \times 6 \times 9} \times 4) = O(6*4) = O(1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Constraints:

- ▶ $1 \le N_4 < N_6 < N_9 \le 100$
- ▶ $1 \le Y \le 10000$

Suppose we should buy k_4 packs of 4 Nuggets, k_6 packs of 6 Nuggets and k_9 packs of 9 Nuggets. Then,

- $\bullet \ 0 \le k_4 N_4 + k_6 N_6 + k_9 N_9 \le Y$
- Want to maximize $4k_4 + 6k_6 + 9k_9$

Constraints:

- ▶ $1 \le N_4 < N_6 < N_9 \le 100$
- ▶ $1 \le Y \le 10000$

Suppose we should buy k_4 packs of 4 Nuggets, k_6 packs of 6 Nuggets and k_9 packs of 9 Nuggets. Then,

•
$$0 \le k_4 N_4 + k_6 N_6 + k_9 N_9 \le Y$$

• Want to maximize
$$4k_4 + 6k_6 + 9k_9$$

Solution 1: Exhaustion Similar to subtask 2, with one more nested for-loop Time complexity: $O(Y^2)$ Time limit exceeded

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Constraints:

- ▶ $1 \le N_4 < N_6 < N_9 \le 100$
- ▶ $1 \le Y \le 10000$

Suppose we should buy k_4 packs of 4 Nuggets, k_6 packs of 6 Nuggets and k_9 packs of 9 Nuggets. Then,

•
$$0 \le k_4 N_4 + k_6 N_6 + k_9 N_9 \le Y$$

• Want to maximize
$$4k_4 + 6k_6 + 9k_9$$

Solution 2: Exhaustion

Exhaust k4 and calculate k6 and k9? Need to use LCM again. Better directly go for the O(1) solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Constraints:

- ▶ $1 \le N_4 < N_6 < N_9 \le 100$
- ▶ $1 \le Y \le 10000$

Suppose we should buy k_4 packs of 4 Nuggets, k_6 packs of 6 Nuggets and k_9 packs of 9 Nuggets. Then,

- $\bullet \ 0 \le k_4 N_4 + k_6 N_6 + k_9 N_9 \le Y$
- Want to maximize $4k_4 + 6k_6 + 9k_9$

Solution 3: Math

- Similar to subtask 3
- If N₄ is the cheapest in terms of unit price, exhaust 0 ≤ k₆ ≤ 5 and 0 ≤ k₉ ≤ 3, calculate k₄

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Time complexity: O(1)