T181 Pig’s CD
Subtask 1

- For each query, do a nested for loop find \(l, r \) such that \(\gcd(a[l].. a[r]) = x \)
- Time complexity = \(O(Q \times N^2 \times \log(1000)) \)
Subtask 2

- First precompute an answer array ANS. Which ANS[x] is the answer for query(x)
- Obviously, a nested for loop can do that
- $O(N^2 \cdot \log(10^6))$
Subtask 3

- \(S[i] \) only equal 1 or 2
- For each \(i \) such that \(S[i] = 1 \), add \(i \times (n - i + 1) \) in \(ANS[1] \)
- For each \(i \) such that \(S[i] = 2 \), find the closest \([l, r]\) such that \(a[l..r] = 2\), add \((i - l + 1) \times (r - i + 1) \) in \(ANS[2] \), \(i \times (n - i + 1) - (i - l + 1) \times (r - i + 1) \) in \(ANS[1] \)
- \(O(N) \)
Subtask 4

- Notice that if we enumerate i as the starting point of the interval, the \(\gcd \) for \([i, j]\) will at most change \(\log(1000) \) times.
- Now enumerate the left interval point, do a binary search for \(\log(1000) \) times to find all the changing points.
- Getting the interval \(\gcd \) could be done using segment tree
- \(O(N \times \log^2(1000) \times \log^2(N)) \)
Subtask 5

- For speed up the process of getting the interval gcd, one could use sparse table instead
- \(O(N \times \log^2(10^6) \times \log(N)) \)
The are multiple ways to solve this subtask based on subtask 5.

The easiest one is don't find the gcd but find if the two interval is divisible by gcd in the sparse table.

\[- leftIntervalGCD \% gcd == 0 \&\& rightIntervalGCD \% gcd == 0 \]

If this is still not fast enough, one could add \(leftIntervalGCD >= gcd \&\& rightIntervalGCD >= gcd \) for avoiding the mod operator for sometimes.

\[O(N \ast \log(10^{18}) \ast \log(N)) \]