M1821 - Contest Score

(Original Version by Percy Wong)

Alex Tung
alex20030190@yahoo.com.hk

24 March 2018

Alex Tung M1821 Tutorial 24 Mar 18 1/7

Subtask 1: P =

@ It is clear that the achievable scores are 0,1,...,2K.

Alex Tung M1821 Tutorial 24 Mar 18 2/7

Subtask 2: K <500

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.

Alex Tung M1821 Tutorial 24 Mar 18 3/7

Subtask 2: K <500

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.

o Generate all scores. There are O(K?) of them.

Alex Tung M1821 Tutorial 24 Mar 18 3/7

Subtask 2: K <500

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.

o Generate all scores. There are O(K?) of them.

@ Answer each query in O(log K). (Use binary search or STL set/map.)

Alex Tung M1821 Tutorial 24 Mar 18 3/7

Subtask 2: K <500

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.

o Generate all scores. There are O(K?) of them.
@ Answer each query in O(log K). (Use binary search or STL set/map.)
o Time complexity: O((K? + N)log K).

Alex Tung M1821 Tutorial 24 Mar 18 3/7

Subtask 3: S[i] < 107

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.

Alex Tung M1821 Tutorial 24 Mar 18 4/7

Subtask 3: S[i] < 107

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.

@ Declare a Boolean array ok[0...107].

Alex Tung M1821 Tutorial 24 Mar 18 4/7

Subtask 3: S[i] < 107

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.

@ Declare a Boolean array ok[0...107].

e lIterate x from 0 to K, but stop when (x > 0 and Px % F == 0).
Why? It is because of the following

Crucial Observation

To test whether a person can get score S, assume that the person has

solved x problems, where x is the smallest nonnegative integer such that
S = Px (mod F).

Alex Tung M1821 Tutorial 24 Mar 18 4/7

Subtask 3: S[i] < 107

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.

@ Declare a Boolean array ok[0...107].

e lIterate x from 0 to K, but stop when (x > 0 and Px % F == 0).
Why? It is because of the following

Crucial Observation

To test whether a person can get score S, assume that the person has

solved x problems, where x is the smallest nonnegative integer such that
S = Px (mod F).

o lterate y from 0 to K — x. If Px + Fy > 107, break. Otherwise, set
ok[Px + Fy]| = True.

Alex Tung M1821 Tutorial 24 Mar 18 4/7

Subtask 3: S[i] < 107

@ All achievable scores are of the form Px + Fy for some nonnegative
integers x,y, x +y < K.
@ Declare a Boolean array ok[0...107].

e lIterate x from 0 to K, but stop when (x > 0 and Px % F == 0).
Why? It is because of the following

Crucial Observation

To test whether a person can get score S, assume that the person has
solved x problems, where x is the smallest nonnegative integer such that
S = Px (mod F).

o lterate y from 0 to K — x. If Px + Fy > 107, break. Otherwise, set
ok[Px + Fy]| = True.

e Time complexity is O(107) because each cell of ok][] is visited at most
once. Queries can be answered via simple lookup.

Alex Tung M1821 Tutorial 24 Mar 18 4/7

Subtask 4: N <50

@ Again we are trying to solve S = Px + Fy.

Alex Tung M1821 Tutorial 24 Mar 18 5/7

Subtask 4: N <50

@ Again we are trying to solve S = Px + Fy.

@ Iterate x from 0 to K. The corresponding y can be found easily.

Alex Tung M1821 Tutorial 24 Mar 18 5/7

Subtask 4: N <50

@ Again we are trying to solve S = Px + Fy.
@ Iterate x from 0 to K. The corresponding y can be found easily.
e Time complexity: O(NK).

Alex Tung M1821 Tutorial 24 Mar 18 5/7

Subtask 4: N <50

@ Again we are trying to solve S = Px + Fy.
@ Iterate x from 0 to K. The corresponding y can be found easily.
e Time complexity: O(NK).

@ This algorithm can solve subtasks 1, 2, 4!

Alex Tung M1821 Tutorial 24 Mar 18 5/7

Full solution 1

@ Per observation, declare an array xmin[0...(F — 1)].

Alex Tung M1821 Tutorial 24 Mar 18 6/7

Full solution 1

@ Per observation, declare an array xmin[0...(F — 1)].

@ Xmin[f] should store the smallest nonnegative x such that xP =i
(mod F), or —1 if there is no solution.

Alex Tung M1821 Tutorial 24 Mar 18 6/7

Full solution 1

@ Per observation, declare an array xmin[0...(F — 1)].
@ Xmin[f] should store the smallest nonnegative x such that xP =i
(mod F), or —1 if there is no solution.

@ By iterating x, Xmin[] can be built in linear time.

Alex Tung M1821 Tutorial 24 Mar 18 6/7

Full solution 1

@ Per observation, declare an array xmin[0...(F — 1)].
@ Xmin[f] should store the smallest nonnegative x such that xP =i
(mod F), or —1 if there is no solution.

@ By iterating x, Xmin[] can be built in linear time.
e With this array, each query can be answered in O(1) time.

Alex Tung M1821 Tutorial 24 Mar 18 6/7

Full solution 1

Per observation, declare an array xpiq[0...(F — 1)].

Xmin|f] should store the smallest nonnegative x such that xP =i
(mod F), or —1 if there is no solution.

@ By iterating x, Xmin[] can be built in linear time.

e With this array, each query can be answered in O(1) time.

@ If xmin[S % F] == —1 or xmin[S % F] > K, of course S is not
achievable.

Alex Tung M1821 Tutorial 24 Mar 18 6/7

Full solution 1

@ Per observation, declare an array xmin[0...(F — 1)].

@ Xmin[f] should store the smallest nonnegative x such that xP =i
(mod F), or —1 if there is no solution.

@ By iterating x, Xmin[] can be built in linear time.

e With this array, each query can be answered in O(1) time.

@ If xmin[S % F] == —1 or xmin[S % F] > K, of course S is not
achievable.

@ Otherwise, find out the corresponding y and check if it is valid.

Alex Tung M1821 Tutorial 24 Mar 18 6/7

Full solution 1

@ Per observation, declare an array xmin[0...(F — 1)].

@ Xmin[f] should store the smallest nonnegative x such that xP =i
(mod F), or —1 if there is no solution.

@ By iterating x, Xmin[] can be built in linear time.
e With this array, each query can be answered in O(1) time.

@ If xmin[S % F] == —1 or xmin[S % F] > K, of course S is not
achievable.
@ Otherwise, find out the corresponding y and check if it is valid.

e Time complexity: O(N + F).

Alex Tung M1821 Tutorial 24 Mar 18 6/7

Full solution 2

e Use extended Euclidean algorithm (see Maths (I)) to find one pair of
solution (x,y) to Px+ Fy = §S.

Alex Tung M1821 Tutorial 24 Mar 18 7/7

Full solution 2

e Use extended Euclidean algorithm (see Maths (I)) to find one pair of
solution (x,y) to Px+ Fy = §S.

OLetP/' WandF W

Alex Tung M1821 Tutorial 24 Mar 18 7/7

Full solution 2

e Use extended Euclidean algorithm (see Maths (I)) to find one pair of
solution (x, y) to Px + Fy = S.

o Let P/ . W and F W
e Shift solution (x, y) to (x + cF',y — cP’). We need a suitable ¢ such
that x + ¢cF’ > 0 and takes minimum value.

Alex Tung M1821 Tutorial 24 Mar 18 7/7

Full solution 2

e Use extended Euclidean algorithm (see Maths (I)) to find one pair of
solution (x, y) to Px + Fy = S.

o Let P/ . W and F W

e Shift solution (x, y) to (x + cF',y — cP’). We need a suitable ¢ such
that x + ¢cF’ > 0 and takes minimum value.

e Time complexity: O(N log F).

Alex Tung M1821 Tutorial 24 Mar 18 7/7

M1822 Power Tower

2018-3-24

Problem statement

* Given a sequence a,, a,, ..., .

a
* You need to find a; %2~ “mod m

«1<m<10°
+1<n<10°%
*1<aq;<10%foralli

Subtask 1
*n=2
* |t is just the same as 20374 Big Mod.

* One can use divide and conquer to solve in O(log a,)

Subtask 1

* Possible solution:

long long big_mod(long long x, long long vy, long long m) {
if (y ==0) return 1 % m;
if (y % 2 ==0) return big_mod(x *x % m, y /2, m);
else return x * big_mod(x, y—1, m) % m;

Subtask 2
*m=10

* Observation 1:
« for a;, we only need to consider its ones digit

Subtask 2

0,0,0,0...
1,1,1,1..
2,4,8,6..
SO/ .
4,6,4,6...
5,5,5,5...
6,6,6,6...
7,93,1...
8,4,2,6...
9,1,9,1...

© N O U A W N R O
W ® N O U A W N R O
m A OO U1 O © & B O
O N W OO U1 B N ©® P O
[. MY I RS S <}

Subtask 2

* From the previous table, we can see that we only need to know
a,®” mod 4

* Observation 2:
« for a,, we only need to consider its remainder when divided 4

Subtask 2

0 0 0 0,0...

1 1 1 1,1..
2 2 0 0,0...
3 3 1 3,1...

Subtask 2

* From the previous table, we can see that we only need to know
az;*” mod 2

* Observation 3:

.A.an. . .

* az;%" s odd if a; is odd
.A.an. . .

* az™" isevenifasis even

Subtask 2

* So if we found b; =a; % 10, b, =a, % 4 and b;=a; % 2

an b
* Then a;%2” mod 10 = blbz *mod 10 which can be evaluated easily

* Special case: b, = 2 then check if a; > 2
* True ->answer = b,
* False -> answer = b;2 % 10

Subtask 3, 4

e Subtask 3: m < 32768

* If you forget to use long long or cannot calculate the prime factorization fast,
then you can still pass this subtask

* Subtask 4:a; = 3 forall
* If you for get to handle some special case, you can still pass this subtask

Subtask 5

* No additional constraints

* From subtask 2, we found that
* the value of x*1 % 10, x*2 % 10, ... repeats
* The value of x*1 % 4, x"2 % 4, ... repeats
* The value of x*1 % 2, x"2 % 2, ... repeats

* Is this true for every m?

Subtask 5

* Euler’s totient theorem
e Ifgcd(a;,m) =1
* Then ¢;*™ = 1(mod m)

* In other words, the value of a,*1 mod m... will repeat after ¢ (m)
times if gcd(a;, m) = 1

* How if gcd(a;,m) = 1?

Subtask 5

* Suppose the power is large enough (actually, 30 is large enough)
* Then we can do the following:
n=m;
while(gcd(ali], n) > 1)
n /= ged(ali], n);
* Then a[i]*1 % n,... will repeat after ¢ (n) times

* So afi]*a[i+1]7... % n = a[ilrM(a[i+1]7... % @(n)) % n
* We can run the big mod algorithm once we know a[i+1]... % @(n)

* Also a[i]*a[i+1]*... % (n/m) =0
* How can we calculate a[i]*a[i+1]*... % m?

Subtask 5

* Chinese Remainder Theorem
* If x = x,(mod m;) and x = x,(mod m,) and gcd(my,m,) =1
* Then x = x;myn, + x,myn, (mod mym,)

» Where n; = m; 1(mod my,), n, = m,~*(mod m;)

* So we can evaluate a[i]*a[i+1]”... % m using the above formula

* Done?

Subtask 5

* NO!!

* Suppose the power is large enough
¢ Why do we need this?
« afi]*ali+1]*... % (n/m) = 0 <= not necessarily true if a[i+1]7... is small
e Eg: 27272 mod 32768 =16 |=0

* So we need to compress the power tower so that it contains no ones and
the power of last two element >30 orn=1
e Eg: 2/2/72 -> 16, 2/27272 -> 2716
* Why 30 is large enough?
* Left as an exercise

Subtask 5

* Is this fast enough?

* Big mod part:
* O(log a;) every time
¢ O(n) times
* O(n log ;) overall

* Chinese remainder part:
* O(log m) every time (calculate inverse using big mod)
¢ O(n) times
¢ O(n log m) overall

* Calculating ¢(n) part:
* O(sqrt m) every time
¢ O(n) times ???

Subtask 5

* Calculating @(n) part:
* O(y/m) every time
* The number m will be halved after at most two iterations
* If mis a odd prime then
. m%(p(m):m—l%(p(m—l)SmT_l

'Sooverall=0(2(\/ﬁ+\/%+\/%+---))=O(W)

* So total time complexity is O(vm + nloga; + nlogm)

Wet Corridor

solution

Lau Chi Yung

2018/03/24

1/16

Problem

€" is bird foot print

v

F#steps = 0
left wetness = 0

v

v

right wetness = 1
total time = 0 + max(0, 1) = 1 second

v

Goal: minimize total time

v

Problem

€" is bird foot print

v

Fsteps = 1

left wetness = 0

v

v

right wetness = 1
total time = 1 + max(0, 1) = 2 seconds

v

Goal: minimize total time

v

Problem

€" is bird foot print

v

Fsteps = 2
left wetness = 0

v

v

right wetness = 2
total time = 2 + max(0, 2) = 4 seconds

v

Goal: minimize total time

v

Problem

€" is bird foot print

v

F£steps = 3
left wetness = 1

v

v

right wetness = 2
total time = 3 + max(1, 2) = 5 seconds

v

Goal: minimize total time

v

2/16

Subtask 1

Denotation:

, 1 if tile (7, ¢) is wet
wety o =
e 0 otherwise

Consider when N < 3.

> Fsteps = 0
> right wetness = 1

» total time = 1 second

Subtask 1

Denotation:

1 if tile (r, c) is wet
wety o =)
0 otherwise

Consider when N < 3.

> FHsteps =1
> right wetness = 2

» total time = 3 seconds

Subtask 1

Denotation:

, 1 if tile (7, ¢) is wet
wety o =
e 0 otherwise

Consider when N < 3.

> Fsteps = 2
> right wetness = 2

» total time = 4 seconds

Subtask 1

Denotation:
1 if tile (r, c) is wet
wety o =)
0 otherwise

Consider when N < 3.

> #steps is always 2
> right wetness = wely 1 + wety

> total time = 2 + wely 1 + wety

3/16

Subtask 1

Consider when N > 4.

dp[i] = minimum sum of #steps and right wetness to step right
foot on tile (2, 7)

4/16

Subtask 1

Base cases:
> dp[l] = wety 1

Subtask 1

Base cases:
> dp[l] = wety 1
> dp[2] = wetp 1 + wely 2 + 1

Subtask 1

Base cases:
> dp[l] = wety 1
> dp[2] = wety 1 + wetr o + 1
> dp[3] = wetz 1 + welp 3 + 1

Subtask 1

Base cases:
> dp[l] = wety 1
> dp[2] = wety 1 + wetr o + 1
> dp[3] = wetz 1 + welp 3 + 1
> dp[4] = wety 1 + wety 4 + 2

Subtask 1
Base cases:
> dp[l] = wety 1
> dp[2] = wetz 1 + wetz 2 + 1
> dp[3] = wetz 1 + welp 3 + 1
> dp[4] = wety 1 + wety 4 + 2
Recurrence:

» dp[i] = je[irilig—l]{dp[j]} + wetp ; + 2

s

5/16

Subtask 1

Base cases:
> dp[l] = wety 1
> dp[2] = wetz 1 + wetz 2 + 1
> dp[3] = wetz 1 + welp 3 + 1
> dp[4] = wety 1 + wety 4 + 2

Recurrence:
» dp[i] = min {dp[j]} + wetp; + 2
jeli—4,i—1]
Answer:

> min (min(dp[N —2],dp[N — 1]) + wetp, v + 2,dp[N] + 1)

s

5/16

Subtask 1

Time complexity:
» O(N)

6/16

Subtask 2

Consider when N < 3.

Answer: max(wet; | + wety y, wety 1 + wety n) + 2

7/16

Subtask 2

Consider when N > 4.

dp[1][7][wl][wr] = minimum #steps to step left foot on (1, i) with
left and right wetness being wl and wr

dp[2][][wl][wr] = minimum #steps to step right foot on (2, 7)
with left and right wetness being wl and wr

Derivation of dp[1][¢][w!][wr] will be omitted because it is similar
to dp[2][¢][wl][wr]

8/16

Subtask 2

Base cases:
> dp[2][1][wet1,1][wet2,1] =0

9/16

Subtask 2
Base cases:
> dp[2][1][wet171][’wet2,1] =0
> dp[2][2][wet; 1|[wets 1 + wety o] =1

9/16

Subtask 2
Base cases:
> dp[2][1][wet1,1][wet2,1] =0
> dp[2][2][weti 1]|[weta 1 + wety o] =1
> dp[2][3][wet; 1][wetz,1 + wety 3] =1

9/16

Subtask 2

Base cases:

> dp[2][1][wet1,1][wet2,1] =0

> dp[2][2][weti 1]|[weta 1 + wety o] =1

> dp[2][3][wety 1][wetz,1 + wetp 3] =1

> dp[2][4][wet 1 + min(wet; 2, wety 3)][wets 1 + wety 4] = 2

9/16

Subtask 2
Base cases:
> dp[2][1][wet1,1][wet2,1] =0
> dp[2][2][weti 1]|[weta 1 + wety o] =1
> dp[2][3][wety 1][wetz,1 + wetp 3] =1
> dp[2][4][wet 1 + min(wet; 2, wety 3)][wety 1 + wety 4] = 2
Recurrence:
> dp[2][d][wl][wr]
= _mn { dp[2][[wl — wety y[wr — wets,] } +2

jeli—4,i—1
keli—2,j+2]

9/16

Subtask 2
Base cases:
> dp[2][1][wet171][wet2,1] =0
> dp[2][2][weti 1]|[weta 1 + wety o] =1
> dp[2][3][wety 1][wetz,1 + wetp 3] =1
> dp[2][4][wet 1 + min(wet; 2, wety 3)][wety 1 + wety 4] = 2
Recurrence:
> dp[2][d][wl][wr]
= _mn { dp[2][[wl — wety y[wr — wets,] } +2

jeli—4,i—1
keli—2,j+2]

9/16

Subtask 2
Base cases:
> dp[2][1][wet171][wet2,1] =0
> dp[2][2][weti 1]|[weta 1 + wety o] =1
> dp[2][3][wety 1][wetz,1 + wetp 3] =1
> dp[2][4][wet 1 + min(wet; 2, wety 3)][wety 1 + wety 4] = 2
Recurrence:
> dp[2][d][wl][wr]
= _mn { dp[2][[wl — wety y[wr — wets,] } +2

je [7574,7171

9/16

Subtask 2
Base cases:
> dp[2][1][wet171][wet2,1] =0
> dp[2][2][weti 1]|[weta 1 + wety o] =1
> dp[2][3][wety 1][wetz,1 + wetp 3] =1
> dp[2][4][wet 1 + min(wet; 2, wety 3)][wety 1 + wety 4] = 2
Recurrence:
> dp[2][d][wl][wr]
= _mn { dp[2][[wl — wety y[wr — wets,] } +2

je [Z’*4,i*1

9/16

Subtask 2

Base cases:

> dp[2][1][wet171][wet2,1] =0

> dp[2][2][weti 1]|[weta 1 + wety o] =1

> dp[2][3][wety 1][wetz,1 + wetp 3] =1

> dp[2][4][wet 1 + min(wet; 2, wety 3)][wety 1 + wety 4] = 2
Recurrence:

> dp[2][4][wl][wr]

= je[irﬂg—l] { dp[2][j][wl — wety i][wr — wety ;] } +2
keli—2,j+2]

Answer: minimum of

» dp[2][N — 2][wl][wr] + max(wl + wety n, wr + wety n) + 2

» dp[2][N — 1][wl][wr] + max(wl + wety n, wr + wety §) + 2

S

9/16

Subtask 2

Time complexity:
» 1<i<N
» 0<wl <N
» 0<wr<N
» O(2x N x N x N) = O(N?3)

10/16

Subtask 3

Just tune the limits in Subtask 2
» 1<i<N
> 0 < wl,wr <40

11/16

Subtask 4
Consider when N > 4.

» In subtask 2, we considered all possible combinations of wl
and wr

» Observe that given m = min(wl, wr) and d = wl — wr, we
can reconstruct wl and wr

» Observe that m will never decrease as Alice walks

12/16

Subtask 4
Consider when N > 4.

» In subtask 2, we considered all possible combinations of wl
and wr

» Observe that given m = min(wl, wr) and d = wl — wr, we
can reconstruct wl and wr

» Observe that m will never decrease as Alice walks

» Now for each DP state, rather than storing #steps, we store
#steps + m

» Rather than considering all combinations of wl and wr, we
only consider all possible values of d

dp[2][¢][d] = minimum #steps + m to step right foot on (2, 7)

Derivation dp[1][¢][d] will be omitted because it is similar to

dp[2][#][d]
12/16

Subtask 4

Base cases:

> dp[2][1][wet; 1 — wets 1]
= min(wetl,l, wetgyl)

13/16

Subtask 4

Base cases:
> dp[2][1][wet; 1 — weta 1]
= min(wetl,l, wetzyl)
| 2 dp[2][2][wet171 — wet271 - w6t272]
= min(wet; 1, wety 1 + wety2) + 1

13/16

Subtask 4

Base cases:
> dp[2][1][wet; 1 — weta 1]
= min(wetl’l, wetzyl)
> dp[2][2][wet; 1 — wety 1 — wety 2]
= min(wet; 1, wety 1 + wetz2) + 1
> dp[2][3][wet171 — wet2,1 — ’wet273]
= min(wet; 1, wety 1 + wety 3) + 1

13/16

Subtask 4

Base cases:

>

dp[2][1][wet1,1 — wety 1]

= min(wet; 1, wety 1)
dp[2][2][wet; 1 — wety 1 — wety 2]
= min(wet; 1, wety 1 + wetz2) + 1
dp[2][3][wet171 — wet2,1 — ’wetg’g]
= min(wet; 1, wety 1 + wety 3) + 1

dp[2][4][weti 1 + min(wety 2, wety 3) — wety 1 — wety 4]
= min(wet; 1 + min(wet; 2, wety 3), wely 1 + wets 1) + 2

13/16

Subtask 4
Recurrence:
> dp[2][i][d]

dp[2[Ld + wets,: — wety 4

= min { +max(0, |d+ wety ; — wety | —|d+ wets ;) }
je[i—4,i—1
?ci[[z'—2,j+2]] + max(0, |d + wety ;| — |d|) + 2

13/16

Subtask 4
Recurrence:
> dp[2][i][d]

dp[2[Ld + wets,: — wety 4

= min { +max(0, |d+ wety ; — wety | —|d+ wets ;) }
je[i—4,i—1
?ci[[i—2,j+2]} + max(0, |d + wety ;| — |d|) + 2

13/16

Subtask 4
Recurrence:
> dp[2][i][d]

dp[2[Ld + wets,: — wety 4

= min { +max(0, |d+ wety ; — wety | —|d+ wets ;) }
je[i—4,i—1
?cz[[i—Q,j-l-Q]} + max(0, |d + wety ;| — |d|) + 2

13/16

Subtask 4
Recurrence:
> dp[2][i][d]

dp[2[Ld + wets,: — wety 4

= min { +max(0, |d+ wety ; — wety | —|d+ wets ;) }
je[i—4,i—1
?ci[[i—lj-i-?]} + max(0, |d + wety ;| — |d|) + 2

13/16

Subtask 4

Recurrence:

> dp[2][7][d]
dp[2][j][d + weta,; — wety i)
= mln { +max(0, |d+ wetg’i — wetl,k| — |d+ wet27i|) }
Ty U max(0, |d + wety 5| — [d]) +2
Answer:

> min(dp[2][V — 2][d], dp[2][N — 1][d])
+ max(0, |d| — |d + wet; n])
+ max(0, |d + wety y| — |d + wety y — wety n|)
+ |d + wety y — wety N| + 2

13/16

Subtask 4

Time complexity:
» 1<i<N
»0<|d[<N
» O(2x N x N) = O(N?)

14/16

Tricky cases

15/16

Tricky cases

15/16

Tricky cases

15/16

Tricky cases

15/16

Tricky cases

15/16

Tricky cases

16/16

Tricky cases

16/16

Tricky cases

16/16

Tricky cases

16/16

Tricky cases

16/16

Tricky cases

16/16

M1824 - Internal Network

M1824 - Internal Network

Percy Wong {percywtc}

HH@ ééﬁ-@ﬁéﬁﬁ@dﬁmg - ;

Background

Problem Idea By - kctung
Prepared By - percywtc

0
= @ EBWIERM R HIE
Hong Kong Olympiad in Informatics

M1824 - Internal Network

Subtask 1 - Exhaustion

Exhaust which node to be upgraded (2N combinations)

For remaining nodes run any MST algorithm,
and find shortest edge to connect any of the upgraded node

Be careful situation that with remaining nodes cannot be connected

Time Complexity: O(2NM + MlogM)
Expected Score: 22/100

0
= @ EBWIERM R HIE
Hong Kong Olympiad in Informatics 3

M1824 - Internal Network

Subtask 2

Note that =107 very large compared to w<10*
We should perform least number of “upgrades”
Perform any fast enough MST algorithm for each connected component

If it forms a tree, that's the answer

Otherwise, it forms a forest of K trees, we have to “upgrade” a node from each
component to make them connected

Time Complexity: O(MlogM + N)

Expected Score: 26/100

0
= @ EBWIERM R HIE
Hong Kong Olympiad in Informatics 4

Subtask 3

If N =2 with one edge connecting them, compare ¢, + ¢, and w,
Otherwise, we must perform upgrades

For each node without edges connecting them, simply add c; to the answer
For each edge (u, v, w), compare c, *¢, and w + min(c,, c,)

e ¢, +c, smaller means upgrading both to connect to network
e w+min(c, ¢,)smaller means connect that cable and upgrade one office

Time Complexity: O(N + M)
Expected Score: 20/100

0
= @ EBWIERM R HIE
Hong Kong Olympiad in Informatics 5

M1824 - Internal Network

Full Solution

Let's first assume no upgrades required,
the answer is simply MST (if the whole graph can be connected)

Otherwise, we can consider “upgrades” as building portals,
which can teleport to any other “upgraded office”

We can imagine the portals will first get you to some “unknown space”,
and then back to another office

To build a portal to the "unknown space” costs ¢,

0
= @ EBWIERM R HIE
Hong Kong Olympiad in Informatics 6

M1824 - Internal Network

Full Solution

Therefore we can transform the graph by:
adding extra edges (0, i) with cost ¢, (node 0 is the “unknown space”)

Then we can simply run any fast enough MST algorithm

Time Complexity: O((M+N)log(M+N))
Expected Score: 100/100

or slow MST algorithm with time complexity O(VE+E?)...

Time Complexity: O((M+N)?)
Expected Score: 37/100

0
= @ EB BN R HE
Hong Kong Olympiad in Informatics 7

