M1811 Almost Constant

2018-3-3
Problem Statement

• Given a sequence a_1, \ldots, a_n
• Find number of almost constant continuous subsequences.

• A sequence is almost constant if different of any two number is less than k

• Constraints:

 $1 \leq N \leq 500000$, $0 \leq |a_i|$, $K \leq 2000000000$
Observation

• Since for any element $x > y$, we have $x - y \leq \max - \min$

• A sequence is almost constant iff max element – min element $\leq k$
Subtask 1

• a_i is monotone

• Then for any sequence a_i, \ldots, a_j

 • We have $\begin{cases} \max = a_i \\ \min = a_j \end{cases}$ or $\begin{cases} \max = a_j \\ \min = a_i \end{cases}$

 • So range_{i,j} = max − min = $|a_i - a_j|$

 • Since a_i is monotone, for fixed i, diff_{i,j} increases as j increases

• So for every fixed i, we can binary search for the largest j such that range_{i,j} <= k, denote the largest j as f_i

• Then ans = $\sum_{i=1}^{n}(f_i - i + 1)$
Subtask 1

• Time complexity: $O(n \lg n)$

• An other solution is to use two-point and the fact that $\max - \min = |a_i - a_j|$

• Two-pointer solutions will be discussed later
Subtask 2

• K <= 1
• This subtask is designed for some kind of brute force algorithm, so there is no specific algorithms for this subtask.
Subtask 3

• $1 \leq N \leq 500$

• We can find the max and min element for every continuous sequence
Subtask 3

for (int i = 1; i <= n; i++)
 for (int j = i; j <= n; j++) {
 int max = a[i], min = a[i];
 for (int k = i; k <= j; k++) {
 if (a[j] > max) max = a[j];
 if (a[j] < min) min = a[j];
 }
 if (((long long)max - min <= k) ans++;
 }
Subtask 3

• Time complexity: $O(n^3)$

• Remember the long long, since $2e9 - (-2e9) = 4e9 > 2e9$
Subtask 4

• $1 \leq N \leq 5000$

• Actually, we don’t need to calculate the max and min value for every continuous subsequence separately.

• We can reuse the value for longer subsequences which start at the same position.
Subtask 4

for (int i = 1; i <= n; i++) {
 int max = a[i], min = a[i];
 for (int j = i; j <= n; j++) {
 if (a[j] > max) max = a[j];
 if (a[j] < min) min = a[j];
 if ((long long) max - min <= k) ans++;
 }
}
Subtask 4

- Time complexity: $O(n^2)$

- Remember the long long, since $2e9 - (-2e9) = 4e9 > 2e9$
Subtask 5

• No additional constraints

• There are many solutions to this question

• And many of them used the fact that
 • Every subsequence of an almost constant sequence is also almost constant.

• The proof is left as an exercise.
Subtask 5

- Here comes a two-pointer (aka sliding windows) algorithm
- First assume that we have a fast enough data structure which can tell us the minimum and maximum value over a continuous subsequence.
- Then for any fixed left point i, we can check that whether moving the right point j still gives us $\max - \min \leq k$
 - If so, increase j by 1
 - Otherwise ans += $j - i + 1$ and then increase i by 1
- Then the time complexity will be $O(n*f(n))$ where $f(n)$ is the time complexity for the query of max and min (for subtask 1, we don’t even need any data structure)
Subtask 5

• Now, let’s go back and see what data structure can be used to achieve this.
• Here we need the data structure to have update and query speed as slow as $O(\lg n)$.
• Actually, many data structure can do this, eg. RMQ, Segment tree
 • But these are not taught yet!
• Then you can use heap (aka priority queue), good news for C++ users
• There is one more container can be used in C++: `std::multiset`
• So learn more about C++ helps a lot.
Subtask 5

• Time complexity: $O(n \lg n)$

• This is fast enough to get full marks, can it be faster?
• I don’t know many data structure, is there easier solution?

• The answer is yes.
Subtask 5++

- Actually, we can use two monotone queues to find a max and min element within the range, one increasing, one decreasing.

- For C++ users, you can use std::deque to implement it, or you can simply use arrays.
Subtask 5++

• To push an element a[i] into the increasing deque, we need to check if the element at the back a[b] satisfy a[b] < a[i], if no pop until the deque is empty or the inequality is satisfied.

• Then a maximum element will always appear at the front of the decreasing deque

• A minimum element will always appear at the front of the increasing deque

• Remember to pop_front when the front element is out of range when using the two-pointer algorithm
Rainbow Necklace

solution

Lau Chi Yung

March 3, 2018
Subtask 1

- $c_i \leq 2$
- In other words, c_i is either 1 or 2
- Answer is also either 1 or 2
- If all c_i are equal, answer is 1
- otherwise, if M is 1, answer is 1
- otherwise, answer is 2
Subtask 2

- $M = N$
- Make a necklace with as many colors as possible with at most M beads
- Without worsening our answer, we can make that necklace with exactly M beads
- i.e. use the whole long string of colorful beads
- Just need to count the number of distinct colors. Possible methods:
 - counting array $O(100000)$
 - sorting and scanning $O(N \log N)$
 - binary search tree $O(N \log N)$
 - std::set $O(N \log N)$
Subtask 3

- $M, N \leq 1000$
- Till now, we should have realized the question is actually asking us to
 - Find the maximum number of distinct integers in a length-M contiguous subsequence in a length-N array of integers.
- There are $N - M + 1$ different contiguous subsequences to consider
- For each of these subsequences, calculate the number of distinct integers:
 - counting array $O(100000)$
 - sorting and scanning $O(N \log N)$
 - binary search tree $O(N \log N)$
 - `std::set` $O(N \log N)$
- Overall time complexity: $O(N^2 \log N)$ (for `std::set`)
- Be careful when $M > N$
Subtask 4

- $1 \leq N, M, c_i \leq 100000$
- Those $N - M + 1$ subsequences overlap each other
- We can derive the number of distinct integers of one subsequence from another subsequence
Subtask 4

\[N = 10, M = 5 \]

store the first length-\(M\) subsequence in data structure

remove the subsequence’s first item from data structure

add the item after the subsequence to data structure

- We derived the 2nd length-\(M\) subsequence from the 1st length-\(M\) subsequence

- Repeating the process, we can derive all subsequences

- The data structure should support:
 - Insert an integer
 - Remove an integer
 - Query the number of distinct integers
Subtask 4

\(N = 10, M = 5 \)

store the first length-\(M \) sub-sequence in data structure

remove the subsequence’s first item from data structure

add the item after the subsequence to data structure

\[
\begin{align*}
\text{std::map<int, int> } & \quad m; \\
& \quad \text{insert } i \quad m[i]++; \\
& \quad \text{remove } i \quad \text{if } (!--m[i]) \quad m.\text{erase}(i); \quad O(\log N) \\
& \quad \text{query } \quad m.\text{size}() \quad O(1)
\end{align*}
\]

- Overall time complexity: \(O(N \log N) \)
- Be careful when \(M > N \)
- This technique is called “sliding window”
Subtask 4

\(N = 10, M = 5 \)

store the first length-\(M \) sub-sequence in data structure

remove the subsequence’s first item from data structure

add the item after the subsequence to data structure

\[\begin{align*}
 &\text{int m[100001] = {0}, colors = 0;} \\
 &\quad \text{insert i if (!m[i]) colors++; m[i]++; } & O(1) \\
 &\quad \text{remove i m[i]--; if (!m[i]) colors--; } & O(1) \\
 &\quad \text{query colors } & O(1) \\
\end{align*} \]

Overall time complexity: \(O(N) \)

Be careful when \(M > N \)

This technique is called “sliding window”
M1813 - Counting Good Strings

Alex Tung
alex20030190@yahoo.com.hk

3 March 2018
Subtasks 1 + 2

- Subtask 1: Check whether the given string is good
Subtasks 1 + 2

- **Subtask 1**: Check whether the given string is good
- The algorithm is simple:

Condition 1 (no K consecutive same bits)

```
LASTBIT := 0, CONSEC := 0
for i = 0...N − 1
    if s[i] = LASTBIT + ‘0’
        CONSEC := CONSEC + 1
    else
        LASTBIT := s[i] - ‘0’, CONSEC := 1
    if CONSEC ≥ K
        return BAD
```
To check condition 2, we use greedy matching.

Condition 2 (T is not a subsequence)

\[
\begin{align*}
T_{\text{POS}} &:= 0 \\
\text{for } i &= 0 \ldots N - 1 \\
&\quad \text{if } T_{\text{POS}} < M \text{ and } s[i] = t[T_{\text{POS}}] \\
&\quad \quad T_{\text{POS}} := T_{\text{POS}} + 1 \\
&\quad \text{if } T_{\text{POS}} = M \\
&\quad \quad \text{return BAD}
\end{align*}
\]
Subtasks 1 + 2

- To check condition 2, we use greedy matching.

Condition 2 (\(T\) is not a subsequence)

\[
\begin{align*}
\text{T}_\text{POS} & := 0 \\
\text{for} \ i & = 0 \ldots N - 1 \\
\text{if} \ \text{T}_\text{POS} & < M \ \text{and} \ s[i] = t[\text{T}_\text{POS}] \\
\quad & \text{T}_\text{POS} := \text{T}_\text{POS} + 1 \\
\text{if} \ \text{T}_\text{POS} & = M \\
\quad & \text{return BAD}
\end{align*}
\]

- For subtask 2, exhaust all possible strings and check one by one.
Observe that we only need \texttt{LASTBIT}, \texttt{CONSEC}, and \texttt{T_POS} for the checking. This allows for a DP formulation with four parameters (\texttt{S_POS, LASTBIT, CONSEC, T_POS}).
Observe that we only need \texttt{LASTBIT}, \texttt{CONSEC}, and \texttt{T_POS} for the checking. This allows for a DP formulation with four parameters \((\texttt{S_POS}, \texttt{LASTBIT}, \texttt{CONSEC}, \texttt{T_POS})\).

Transition is done by appending ‘0’ or ‘1’ to the current string, whichever is allowed.
Observe that we only need $LASTBIT$, $CONSEC$, and T_POS for the checking. This allows for a DP formulation with four parameters ($S_POS, LASTBIT, CONSEC, T_POS$).

Transition is done by appending ‘0’ or ‘1’ to the current string, whichever is allowed.

Append NEW_BIT. New state: ($S_POS + 1, NEW_BIT, x, y$)
Observe that we only need LASTBIT, CONSEC, and T_POS for the checking. This allows for a DP formulation with four parameters (S_POS, LASTBIT, CONSEC, T_POS).

Transition is done by appending ‘0’ or ‘1’ to the current string, whichever is allowed.

Append NEW_BIT. New state: ($\text{S_POS} + 1$, NEW_BIT, x, y)

If $\text{NEW_BIT} = \text{BIT}$, then $x = \text{CONSEC} + 1$. Otherwise, $x = 1$.
Observe that we only need \textit{LASTBIT}, \textit{CONSEC}, and \textit{T.POS} for the checking. This allows for a DP formulation with four parameters \((S.POS, \textit{LASTBIT}, \textit{CONSEC}, \textit{T.POS})\).

Transition is done by appending ‘0’ or ‘1’ to the current string, whichever is allowed.

Append \textit{NEW.BIT}. New state: \((S.POS + 1, \textit{NEW.BIT}, x, y)\)

If \textit{NEW.BIT} = \textit{BIT}, then \(x = \text{CONSEC} + 1\).
Otherwise, \(x = 1\).

If \textit{NEW.BIT} + ‘0’ = \(t[T.POS]\), then \(y = T.POS + 1\).
Otherwise, \(y = T.POS\).
Observe that we only need $LASTBIT$, $CONSEC$, and T_POS for the checking. This allows for a DP formulation with four parameters $(S_POS, LASTBIT, CONSEC, T_POS)$.

Transition is done by appending ‘0’ or ‘1’ to the current string, whichever is allowed.

Append NEW_BIT. New state: $(S_POS + 1, NEW_BIT, x, y)$

If $NEW_BIT = BIT$, then $x = CONSEC + 1$. Otherwise, $x = 1$.

If $NEW_BIT + ‘0’ = t[T_POS]$, then $y = T_POS + 1$. Otherwise, $y = T_POS$.

Kill states corresponding to bad strings.
Observe that we only need \texttt{LASTBIT}, \texttt{CONSEC}, and \texttt{T_POS} for the checking. This allows for a DP formulation with four parameters (\texttt{S_POS}, \texttt{LASTBIT}, \texttt{CONSEC}, \texttt{T_POS}).

Transition is done by appending ‘0’ or ‘1’ to the current string, whichever is allowed.

Append \texttt{NEW_BIT}. New state: (\texttt{S_POS} + 1, \texttt{NEW_BIT}, x, y)

If \texttt{NEW_BIT} = \texttt{BIT}, then \(x = \texttt{CONSEC} + 1 \). Otherwise, \(x = 1 \).

If \texttt{NEW_BIT} + ‘0’ = \(t[\texttt{T_POS}] \), then \(y = \texttt{T_POS} + 1 \). Otherwise, \(y = \texttt{T_POS} \).

Kill states corresponding to bad strings.

Time complexity: \(O(NMK) \).
The condition on A really means: for any $d = 0, 1, \ldots, N$, there exists $a_i, a_j \in A$, such that $a_i + a_j = d$.
The condition on A really means: for any $d = 0, 1, \ldots, N$, there exists $a_i, a_j \in A$, such that $a_i + a_j = d$.

Because when we expand $p_A(x)$, we get a sum of terms like $x^{a_i + a_j}$.
The condition on A really means: for any $d = 0, 1, \ldots, N$, there exists $a_i, a_j \in A$, such that $a_i + a_j = d$.

Because when we expand $p_A(x)$, we get a sum of terms like $x^{a_i+a_j}$.

In simpler terms, $A + A$ contains $0, 1, \ldots, N$.
Subtask 1: $N \leq 8$

- Method 1: Solve by hand, hardcode
Subtask 1: $N \leq 8$

- Method 1: Solve by hand, hardcode
- Method 2: Print $0, 1, \ldots, \left\lfloor \sqrt{4 \times N + 1} \right\rfloor - 1$

Solving small cases gives a "feeling" for the general solution
Subtask 1: $N \leq 8$

- Method 1: Solve by hand, hardcode
- Method 2: Print $0, 1, \ldots, \left\lfloor \sqrt{4 \times N + 1} \right\rfloor - 1$
- Solving small cases gives a “feeling” for the general solution
Subtask 2: \(N \leq 18 \)

- Method 1: Solve by hand, hardcode

Time complexity of Method 2: \(O(2^N) \)
Subtask 2: $N \leq 18$

- Method 1: Solve by hand, hardcode
- Method 2: Exhaust all subsets of \{0, 1, \ldots, N\}, output suitable one

Time complexity of Method 2: $O(2^N)$
Subtask 2: $N \leq 18$

- Method 1: Solve by hand, hardcode
- Method 2: Exhaust all subsets of $\{0, 1, \ldots, N\}$, output suitable one
- Time complexity of Method 2: $O(2^N N^2)$
Subtask 3: \(N = k^2 \)

- \(A \) can have \(2k \) elements
Subtask 3: $N = k^2$

- A can have $2k$ elements
- Idea: Write numbers in base k
Subtask 3: $N = k^2$

- A can have $2k$ elements
- Idea: Write numbers in base k
- Choose $A = \{0, 1, \ldots, k - 1, k, 2k, \ldots, k^2\}$
Subtask 3: $N = k^2$

- A can have $2k$ elements
- Idea: Write numbers in base k
- Choose $A = \{0, 1, \ldots, k - 1, k, 2k, \ldots, k^2\}$
- $A + A$ contains $0, 1, \ldots, N = k^2, N + 1, \ldots, k(k + 1)$
Consider one more type of input: \(N = k(k + 1) \)
Subtask 3.5: $N = k(k + 1)$

- Consider one more type of input: $N = k(k + 1)$
- In this case, A can have $2k + 1$ elements
Subtask 3.5: $N = k(k + 1)$

- Consider one more type of input: $N = k(k + 1)$
- In this case, A can have $2k + 1$ elements
- Choose $A = \{0, 1, \ldots, k - 1, k, 2k, \ldots, k^2, k^2 + k\}$
Subtask 3.5: $N = k(k + 1)$

- Consider one more type of input: $N = k(k + 1)$
- In this case, A can have $2k + 1$ elements
- Choose $A = \{0, 1, \ldots, k - 1, k, 2k, \ldots, k^2, k^2 + k\}$
- $A + A$ contains $0, 1, \ldots, N = k(k + 1), N + 1, \ldots, (k + 1)^2 - 1$
The general case

- For any given integer N, we can find:
 - k such that $k^2 \leq N \leq k(k + 1)$, or
 - k such that $k(k + 1) \leq N < (k + 1)^2$

In the first case, replace N by k^2 and solve as in subtask 2.

In the second case, replace N by $k(k + 1)$ and solve as in subtask 3.5.

The time complexity is $O(\sqrt{N})$.

P.S. will never appear :P
The general case

For any given integer N, we can find:

- k such that $k^2 \leq N \leq k(k + 1)$, or
- k such that $k(k + 1) \leq N < (k + 1)^2$

In the first case, replace N by k^2 and solve as in subtask 3.
The general case

- For any given integer N, we can find:
 - k such that $k^2 \leq N \leq k(k + 1)$, or
 - k such that $k(k + 1) \leq N < (k + 1)^2$

- In the first case, replace N by k^2 and solve as in subtask 3
- In the second case, replace N by $k(k + 1)$ and solve as in subtask 3.5
The general case

For any given integer N, we can find:
- k such that $k^2 \leq N \leq k(k + 1)$, or
- k such that $k(k + 1) \leq N < (k + 1)^2$

- In the first case, replace N by k^2 and solve as in subtask 3
- In the second case, replace N by $k(k + 1)$ and solve as in subtask 3.5
- The time complexity is $O(\sqrt{N})$
The general case

- For any given integer N, we can find:
 - k such that $k^2 \leq N \leq k(k + 1)$, or
 - k such that $k(k + 1) \leq N < (k + 1)^2$

- In the first case, replace N by k^2 and solve as in subtask 3
- In the second case, replace N by $k(k + 1)$ and solve as in subtask 3.5
- The time complexity is $O(\sqrt{N})$
- P.S. No solution will never appear :P