M1801 - Two-cube Calendar

Alex Tung
alex20030190@yahoo.com.hk

15 February 2018
Step 1: Storing cube digits

- Easiest way: use (Boolean) arrays $A[]$ and $B[]$ to mark appearances of digits.

Step 1: Storing cube digits

- Easiest way: use (Boolean) arrays $A[]$ and $B[]$ to mark appearances of digits.
- For example, if first two lines of input are

 1 1 2 2 6 6
 0 0 0 0 0 9,

Step 1: Storing cube digits

- Easiest way: use (Boolean) arrays $A[]$ and $B[]$ to mark appearances of digits.
- For example, if first two lines of input are

 1 1 2 2 6 6
 0 0 0 0 0 9,

- Afterwards,

Step 2: Answering queries

- Two ways to read the queries: as integers, or as strings.
Step 2: Answering queries

- Two ways to read the queries: as integers, or as strings.
- As integer: say the input is K.
 Its tens digit is $K/10$ and its unit digit is $K \% 10$.
Step 2: Answering queries

- Two ways to read the queries: as integers, or as strings.
 - As integer: say the input is K.
 Its tens digit is $K/10$ and its unit digit is $K \% 10$.
 - As string: say the input is $str[]$.
 Its tens digit is $(str[0] - '0$) and its unit digit is $(str[1] - '0$).

Step 2: Answering queries

- Two ways to read the queries: as integers, or as strings.
 - As integer: say the input is K.
 Its tens digit is $K/10$ and its unit digit is $K \% 10$.
 - As string: say the input is $str[]$.
 Its tens digit is $(str[0] - '0')$ and its unit digit is $(str[1] - '0')$.
- The answer is Yes if and only if:
 - $A[tens] = 1$ and $B[unit] = 1$, OR
Some contestants failed to handle digits 6 and 9 correctly.
Some contestants failed to handle digits 6 and 9 correctly.

Suggestion: in contests without instant feedback (or if incorrect submission leads to penalty), test boundary cases.
Some contestants failed to handle digits 6 and 9 correctly.

Suggestion: in contests without instant feedback (or if incorrect submission leads to penalty), test boundary cases.

Try dice with:
- Both 6 and 9
- 6 only
- 9 only
Area of the heart

- A correct rectangular paper is $W \times W/4$ unit square
- area of the rectangular paper = $W^2/4$
- then area of the heart = $W^2/4 \times 5/8$
 (by measuring with a ruler, counting etc)
Subtask 1 \(W = H \)

- Divide the square paper into four stripes
- Each one's area = \(W \times W/4 \), which can be folded into a heart of area \(W \times W/4 \times 5 / 8 \)
- Guaranteed at least one heart can be made means \(T \leq W \times W/4 \times 5 / 8 \), i.e. we can always fold four hearts
- final answer = \(4 \times W \times W/4 \times 5 / 8 \)
Cutting paper - two situations only

First, rotate the paper so that \(W > H \)

1. If \(W/4 < H \), cut horizontally;
 area increment \(W \times W/4 \times 5 / 8 \);
 repeat with \(W' = W, H' = H - W/4 \)
Cutting paper - two situations only

2. If $W/4 > H$, cut vertically;
 area increment $4H \times H \times 5/8$;
 repeat with $W' = W - 4H$, $H' = H$

- Terminate when heart area $< T$
- Each iteration reduces W or H a little.

Time complexity $= O(W + H)$ TLE
Cutting paper - speed up

- For long stripes, cut a whole bunch at once

- 7 identical correct ratio papers, each with area $4H^2$

- Area increment $7 \times 4H^2 \times \frac{5}{8}$

- Repeat the process with $W' = W \mod 4H$, $H' = H$

means remainder of $W \div (4H)$
Time complexity

- In each iteration, the paper area is reduced into smaller than half of its size
- $O(\log(WH))$
M1803 I love you I love you

Steven Lau
Subtask 1, 2, 3

- Expected solution: repeat `string.erase` until done
- Need to carefully handle many corner cases mixed
 - "HKOI love your sister." (stick to other words)
 - "I love you very much." (beginning of sentence)
 - "Alice I love you very much." (middle of sentence)
 - "Alice I love you." (end of sentence)
 - "Alice I love I love you xd." (multiple deletion)
 - "I love you." (delete entire sentence)
 - x(
Simplification

- This kind of string processing problems can be extremely annoying if you do not simplify the complexity.
- Observation: sentences are independent with each other.
- Idea: solve the problem sentence by sentence.
- Greatly simplified fullstop handling.
Simplification

- Organize the whole email into an **array of array of string**
- Alice I love you. Believe me. I love you.
- `[["Alice", "I", "love", "you"]`
 , `["Believe", "me"]`
 , `["I", "love", "you"]`
]`
- No more spaces, no more fullstops :)

Solving a sentence

- So each sentence is just an array of string
- Time to delete "I love you"
- We need to efficiently handle a lengthy

 I love I I love you love you you

- looks like… (((())))?

- let's use stack! (learn more in Data structures (I))
Stack

- When encountered "I", "love" or "you" that is a continuation of the top of stack, push into stack
 - continuation:
 - I -> I
 - I -> love
 - love -> I
 - love -> you
 - if top of stack is ["I", "love", "you"], pop the three words
- Otherwise, output the whole stack and clear the stack
I love I I love you love you love

[]
["I"]
["I","love"]
["I","love","I"]
["I","love","I","I"]
["I","love","I","I","love"]
["I","love","I","I","love","you"] pop!
["I","love","I","love"]
["I","love","I","love","you"] pop!
["I","love","I","love","you"] output!
[]
Output

- Eventually, you get

  ```
  [ ['Alice'], ['Believe', 'me'], [], <-- empty sentence]
  ```

- Simply output words separated by space and sentences separated by space and ends with fullstop. Remember to skip empty sentences.

- Alice. Believe me.
Time complexity

- Each word is pushed into the stack once and popped once
- $O(\text{Text size})$
Common bug

- Forgot to clear the stack at the end
M1804 - Programmer’s Dream

Alex Tung
alex20030190@yahoo.com.hk

15 February 2018
Subtask 1: $N = 2$

- Bob will move to 0 or N in one step.
Subtask 1: $N = 2$

- Bob will move to 0 or N in one step.
- Therefore the answer is just $\frac{p}{q}$.

Don't forget to reduce the fraction! e.g. $\Pr(2, 3, 4) = \frac{2}{4}$, but output should be 2.
Bob will move to 0 or \(N \) in one step.

Therefore the answer is just \(\frac{p}{q} \).

Don’t forget to reduce the fraction!

e.g. \(Pr(2, 1, 2, 4) = \frac{2}{4} \), but output should be \(1 \ 2 \).
Subtask 2: \(N \leq 3 \)

- For fixed \(N, p, q \), let \(f(X) := Pr(N, X, p, q) \).
- Let \(L := \frac{p}{q} \) and \(R := 1 - L \).
Subtask 2: $N \leq 3$

- For fixed N, p, q, let $f(X) := Pr(N, X, p, q)$.
- Let $L := \frac{p}{q}$ and $R := 1 - L$.
- Idea: try to find $f(0), f(1), \ldots, f(N)$ simultaneously.

\[
\begin{align*}
 f(0) &= f(N) = f(X) = L \times f(X-1) + R \times f(X+1)
\end{align*}
\]

We will discuss the general solution later.
Subtask 2: $N \leq 3$

- For fixed N, p, q, let $f(X) := Pr(N, X, p, q)$.
- Let $L := \frac{p}{q}$ and $R := 1 - L$.
- Idea: try to find $f(0), f(1), \ldots, f(N)$ simultaneously.
- We know that:

\[
\begin{align*}
 f(0) &= 1 \\
 f(N) &= 0 \\
 f(X) &= L \times f(X - 1) + R \times f(X + 1)
\end{align*}
\]
For fixed N, p, q, let $f(X) := Pr(N, X, p, q)$.

Let $L := \frac{p}{q}$ and $R := 1 - L$.

Idea: try to find $f(0), f(1), \ldots, f(N)$ simultaneously.

We know that:

\[
\begin{align*}
 f(0) &= 1 \\
 f(N) &= 0 \\
 f(X) &= L \times f(X - 1) + R \times f(X + 1)
\end{align*}
\]

We will discuss the general solution later.
Subtask 2: $N \leq 3$

For $N = 3$ it is simpler:

\[
\begin{align*}
 f(1) &= L + R \times f(2) \\
 f(2) &= L \times f(1)
\end{align*}
\]
Subtask 2: $N \leq 3$

For $N = 3$ it is simpler:

\[
\begin{cases}
 f(1) &= L + R \times f(2) \\
 f(2) &= L \times f(1)
\end{cases}
\]

Solving gives $f(1) = \frac{L}{1-LR}$ and $f(2) = \frac{L^2}{1-LR}$.
Remains to solve the following for $f(x)$:

\[
\begin{align*}
 f(0) &= 1 \\
 f(N) &= 0 \\
 f(X) &= L \times f(X - 1) + R \times f(X + 1)
\end{align*}
\]
Remains to solve the following for $f(x)$:

\[
\begin{aligned}
 f(0) &= 1 \\
 f(N) &= 0 \\
 f(X) &= L \times f(X - 1) + R \times f(X + 1)
\end{aligned}
\]

Rewrite as $L \times (f(X) - f(X - 1)) = R \times (f(X + 1) - f(X))$.
Remains to solve the following for $f(x)$:

\[
\begin{align*}
 f(0) &= 1 \\
 f(N) &= 0 \\
 f(X) &= L \times f(X - 1) + R \times f(X + 1)
\end{align*}
\]

Rewrite as $L \times (f(X) - f(X - 1)) = R \times (f(X + 1) - f(X))$.

That means $f(X + 1) - f(X) = \gamma^X (f(1) - f(0))$, where $\gamma := \frac{L}{R}$.

\[
\sum_{X=0}^{N-1} L \times (f(X) - f(X - 1)) = (1 + \gamma + \gamma^2 + \cdots + \gamma^{N-1}) (f(1) - f(0))
\]

Therefore, $f(1) - f(0) = -\frac{1}{1+\gamma+\cdots+\gamma^{N-1}}.$
Subtask 3: $N \leq 10$

Remains to solve the following for $f(x)$:

$$\begin{cases} f(0) &= 1 \\ f(N) &= 0 \\ f(X) &= L \times f(X - 1) + R \times f(X + 1) \end{cases}$$

Rewrite as $L \times (f(X) - f(X - 1)) = R \times (f(X + 1) - f(X))$.

That means $f(X + 1) - f(X) = \gamma^X (f(1) - f(0))$, where $\gamma := \frac{L}{R}$.

Sum for $X = 0, 1, 2, \ldots, N - 1$,

$LHS = (f(1) - f(0)) + (f(2) - f(1)) + \cdots + (f(N) - f(N - 1))$

$= f(N) - f(0) = -1$

$RHS = (1 + \gamma + \gamma^2 + \cdots + \gamma^{N-1})(f(1) - f(0))$
Subtask 3: $N \leq 10$

- Remains to solve the following for $f(x)$:

$$
\begin{align*}
&f(0) = 1 \\
&f(N) = 0 \\
&f(X) = L \times f(X - 1) + R \times f(X + 1)
\end{align*}
$$

- Rewrite as $L \times (f(X) - f(X - 1)) = R \times (f(X + 1) - f(X))$.
- That means $f(X + 1) - f(X) = \gamma^X (f(1) - f(0))$, where $\gamma := \frac{L}{R}$.
- Sum for $X = 0, 1, 2, \ldots, N - 1$,

 $LHS = (f(1) - f(0)) + (f(2) - f(1)) + \cdots + (f(N) - f(N - 1))$

 $= f(N) - f(0) = -1$

 $RHS = (1 + \gamma + \gamma^2 + \cdots + \gamma^{N-1})(f(1) - f(0))$

- Therefore, $f(1) - f(0) = \frac{-1}{1 + \gamma + \gamma^2 + \cdots + \gamma^{N-1}}$.
Subtask 3: $N \leq 10$

- Now sum for $X = 0, 1, 2, \ldots, K - 1$:
 - LHS = $f(K) - 1$;
 - RHS = $(1 + \cdots + \gamma^{K-1})(f(1) - f(0))$.

\[f(K) = \gamma + \cdots + \gamma^{K-1} + (f(1) - f(0)) \]

If $\gamma = \left(\frac{L}{L+R}\right)$, then $f(K) = -K$.

Otherwise, $\gamma^{K} + \gamma^{K-1} + \cdots + \gamma = \gamma^{K} - 1$.

We get

\[
\frac{\gamma^{K} - 1}{1 - \gamma} = f(K) - f(0) = \gamma^K - \gamma^0.
\]
Subtask 3: $N \leq 10$

- Now sum for $X = 0, 1, 2, \ldots, K - 1$:

 \[
 \text{LHS} = f(K) - 1;
 \]
 \[
 \text{RHS} = (1 + \cdots + \gamma^{K-1})(f(1) - f(0)).
 \]

- Therefore we get
 \[
 f(K) = 1 - \frac{1 + \cdots + \gamma^{K-1}}{1 + \cdots + \gamma^{N-1}}
 \]
 \[
 = \frac{\gamma^{K-1} + \cdots + \gamma^{N-1}}{1 + \cdots + \gamma^{N-1}}.
 \]
Subtask 3: $N \leq 10$

- Now sum for $X = 0, 1, 2, \ldots, K - 1$:

 LHS = $f(K) - 1$;

 RHS = $(1 + \cdots + \gamma^{K-1})(f(1) - f(0))$.

- Therefore we get

 $f(K) = 1 - \frac{1 + \cdots + \gamma^{K-1}}{1 + \cdots + \gamma^{N-1}}$

 $= \frac{\gamma^K + \cdots + \gamma^{N-1}}{1 + \cdots + \gamma^{N-1}}$.

- If $\gamma = 1$ (i.e. $L = R$), then $f(K) = \frac{N-K}{N}$.
Subtask 3: \(N \leq 10 \)

- Now sum for \(X = 0, 1, 2, \ldots, K - 1 \):

 \[
 \text{LHS} = f(K) - 1;
 \]

 \[
 \text{RHS} = (1 + \cdots + \gamma^{K-1})(f(1) - f(0)).
 \]

- Therefore we get

 \[
 f(K) = 1 - \frac{1+\cdots+\gamma^{K-1}}{1+\cdots+\gamma^{N-1}}
 \]

 \[
 = \frac{\gamma^K+\cdots+\gamma^{N-1}}{1+\cdots+\gamma^{N-1}}.
 \]

- If \(\gamma = 1 \) (i.e. \(L = R \)), then \(f(K) = \frac{N-K}{N} \).

- Otherwise,

 \[
 \gamma^K + \cdots + \gamma^{N-1} = \gamma^K \left(\frac{\gamma^{N-K}-1}{\gamma-1} \right)
 \]

 \[
 1 + \gamma + \cdots + \gamma^{N-1} = \frac{\gamma^{N-1}-1}{\gamma-1}
 \]

 and we get

 \[
 f(K) = \frac{\gamma^{N-K}}{\gamma^{N-1}} = \frac{L^N-L^K R^{N-K}}{L^N-R^N} = \frac{p^N-p^K (q-p)^{N-K}}{p^N-(q-p)^N}.
 \]
M1805 - Heart Shaper

Percy Wong {percywtc}
Partial Solution - Exhaustion

Simply try all possible places of the “heart-shape”

PSEUDOCODE

```
Ans = infinity
For i = 3*x+1 .. R
    For j = 4*x+1 .. R
        If (Calc(i, j) < Ans)
            Ans = Calc(i, j)
```

Here, Calc(i, j) returns the cost (number of bits to toggle) if we place the “heart-shape” with bottom-right bit at the i-th row, j-th column
Partial Solution - Exhaustion

You should carefully implement the function $\text{Calc}(i, j)$ by analyzing the relations between coordinates of the “heart-shape” and the value N (or x)

Time Complexity : $O(RCN^2)$ // considering the whole rectangle as number of bits in a rectangle $\sim O(N^2)$

Time Complexity : $O(RCN)$ // considering only the heart-shape as number of bits in a heart-shape $\sim O(N)$

Expected Score : 8 ~ 18 out of 20 // based on your implementation
Full Solution

Notice that the “heart-shape” is formed by six diagonal lines
Or six horizontal / vertical lines,
if you rotate the bitmap (or your head) by 45 degrees
Full Solution

We know how to find the sum of elements in subarray with *prefix sum*

In case you do not know *prefix sum*...

For an 1-d array `arr[]`, we can build another 1-d array `pre[]`, such that

- `pre[i]` is the value of `arr[1] + arr[2] + ... + arr[i]`

This can be calculated in O(N) with the formula

- `pre[i] = pre[i-1] + arr[i]`

Thus we can query any subarray sum with O(1) now as

- the sum from the x^{th} to y^{th} elements is `pre[y] - pre[x-1]`
Full Solution

We can actually apply the prefix sum technique to the bitmap, but in diagonal directions instead of horizontal / vertical.

In other words, by using the formula:

\[
\text{pre}[i][j] = \text{pre}[i-1][j-1] + \text{bitmap}[i][j]
\]

We can find the number of 1-bits of any diagonals from \((i, j)\) to \((x, y)\):

\[
\text{count} = \text{pre}[x][y] - \text{pre}[i-1][j-1]
\]

Apply this technique to the other direction as well.

\[
\text{count} = \text{pre}[x][y] - \text{pre}[i-1][j-1]
\]

// \(i \leq x; j \leq y; x - i = y - j\)
Full Solution

Now, we can compute the number of 1-bits in “heart-shape” with any given positions in $O(1)$ per query // and $O(RC)$ pre-compute

By knowing the number of 1-bits in the whole initial bitmap as well, we can calculate the number of bits to toggle for any given positions too

Time Complexity : $O(RC)$ // $O(RC)$ pre-compute + $O(RC)$ exhaustion

Expected Score : 20 out of 20