Data Structure (ll)

GagGuy & Sampson

Overview

Disjoint sets
Segment tree
Binary Indexed Tree
Trie

Review

* Binary Search Tree
* Heap (Priority Queue)
 Hash Tables

The Union-Find Problem

* N balls initially, each ball in its own bag
— Label the balls 1, 2, 3, ..., N

* Two kinds of operations:

— Pick two bags, put all balls in bag 1 into bag 2
(Union)

— Given 2 balls, ask whether they belongs to the
same bag (Find)

Disjoint Set

e A forest is a collection of trees

* Each bag is represented by a rooted tree, with
the root being the representative ball

oo

Disjoint Set

* Find(x)
— Traverse from x up to the root
* Union(x, y)

— Merge the two trees containing x and y

Ad - gh

Disjoint Set

nitial @006

Union 1 3: ‘ ‘ ‘

©
oz | B P

| @

Disjoint Set

* Representing the tree
* Parent array

— Parent[x] := parent of x
— If x is a root, then parent[x] = x

Disjoint Set

int find(int x) {
while (parent[x]!=x) x = parent[x];

return X,

vold union (int x,1int vy) {
parent|[y] = X;
}

Disjoint Set

* Worst case
— O(NM)
* |Improvements

— Union by rank
— Path compressions

Disjoint Set — Union by rank

e We should avoid tall trees

e Root of the taller tree becomes the new root
when union

* So, keep track of tree heights (ranks)

Good —W I i q — Bad

Disjoint Set — Path Compression

g

* Find(4)

The rootis 3

Y
——>

The root is 3

The rooﬁ

Disjoint Set

* Time complexity using Union by rank + Path
compression

* O((N)) for each query
— Amortized time
— a(N) <5 for practically large N

Range Maximum Query

* Given an integer array A
* Query(x,y)

— Ask for the maximum element in A[x] to Aly]
* Update(x,val)

— Set A[x] to val

Segment Tree

Binary Tree

Each node represent a segment
Root = [1,N]

Parent = [x,Vy]

— Left child = [x, (x+y)/2]

— Right child = [(x+y)/2+1, y]

Tree height =g N

Segment Tree

Range Maximum Query

* Given an integer array A
* Query(x,y)

— Ask for the maximum element in A[x] to Aly]

 Each node with interval [l,h]
— Store the maximum element in A[l] to A[h]

Segment Tree

e Build
— O(N)
* Query
— O(log N)
* Update
— O(log N)

Example 1

* Given an array A with N elements.

* Q operations
— Update(x,y,v): add v to A[x], A[x+1], .., Aly]
— Query(x): find the value of A[x]

Example 2

* Given an array A with N elements.
* Q operations

— Find(): return the maximum subsequence sum
— Update(x,v): change the value of A[x] to v

Example 3

* Thereisa 1l x N wall

e Each time the painter will paint color ¢ from
grid x to grid y

* Return the color of each grid after all paint
operations

Example 4

* Given N rectangles on 2D plane
* Find the union area

Implementations

struct node{
int left, right, maxval;
} Tree[MAX_N];

/*Call build(1l, range_x, range_y)*/
void build(int ind, int x, int y){
Tree[ind].left = x;
Tree[ind].right = y;
if (x!=y){
build(ind*2, x, (x+y)/2);
build(ind*2+1, (x+y)/2+1, y);
Tree[ind].maxval = max(Tree[ind*2].maxval, Tree[ind*2+1].maxval);
}

else Tree[ind].maxval = a[x];

}

/*Return the largest value in a[x]..a[y]*/
int query(int ind, int x, int y){
if (Tree[ind].left<=x && y<=Tree[ind].right) return Tree[ind].maxval;
int leftmax, rightmax;
leftmax = -INF;
rightmax = -INF;
if (x<=Tree[ind*2].right) leftmax = query(ind*2, x, y);
if (y>=Tree[ind*2+1].left) rightmax = query(ind*2+1, x, y);
return max(leftmax, rightmax);

Further reading

* http://www.topcoder.com/tc?module=Static&
d1l=tutorials&d2=lowestCommonAncestor

http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor

Binary Indexed Tree

Simplified segment tree

Define lowbit(x) = the value of the rightmost 1
in the binary representation of x

Let x =22 = 10110,, lowbit(x) = 00010, = 2
Node x is responsible for [x — lowbit(x) + 1, x]
An array of size N needs a BIT of size N
lowbit(x) = x & -x

Binary Indexed Tree

* Given an array A with N elements.
* Q operations
— Update(x,v): add v to A[x]
— Sum(x): find the value of A[1] + A[2] + ... + A[X]

Binary Indexed Tree

16 (2)

 Node x represents the value of B 150
14 (1)
A[x — lowbit(x) + 1] + ... + A[x — 1] I B o

12(2)
+ A[X] 11 (2)
10 (5)

9(2)
8 (4)

[7©
6 (3)
l mso
A1)

3

E 2 (0)
i E [F—1m

0 ()

Binary Indexed Tree

To find sum(13), we iterate
through node 13, 12 and 8
13: 1011,

12: 1010,

8: 1000,

for(inti=x;i>0;i-=i & -i)

iteration

iteration

iteration

teration

Binary Indexed Tree

For Update(5, 1), we iterate

through node 5, 6, 8 and 16
5: 00101,

6: 00110, e

8: 01000, i

16: 10000,

for(inti=x;i<=n;i+=i & -i)

Binary Indexed Tree

Build

— O(N)

Query

— O(log N)

Update

— O(log N)

Advantage compared to segment tree

— Shorter code length
— Smaller constant

Trie

Given a dictionary of N words
M queries

For each query, determine whether the given
string is a word in the dictionary

Solution 1:
Sort the words in lexicographical order
Binary search

Tri
” ” 1/

Dictionary: {“rbop”, “rbr”, “op”, “gg”, “aoc”
Sorted: {HaOCH’ llggH’ llOpH’ Hrer’ llrbopﬂ}

Checking whether “aoc” is a word
Binary searching

“aoc” < “op”

“aoc” < “gg”

“aoc” = “aoc”

Trie

* |f input strings only have ‘a’ to ‘7’
— Each node has 26 edges corresponding to letters
‘a’, lb’, IC', ver) ‘7’
* The string represented by node i is the path
from the root to node i

* A node also has to store whether the
represented string is a valid word

Trie
Inserting string “op” into trie t

We start from the root

Check if the root has an “0” edge

If not, create the edge and the new node
Move the current node to “o”

ll 14

Check if this node has an “p” edge
If not, create the edge and the new node “op”
Move the current node to “op”

Put a mark in the current node (to mark “op” as a valid word)

Trie

For searching, the process is similar except that
we quit when the corresponding edge is not
found

If we reach the corresponding node in the trie,
don’t forget to check whether it is a word

Insertion: O(|S])
Searching: O(|S|)
Memory: O(|S| * Alphabet_size)

