HKOI 2016/17 SQ4 - Magic Triangle II

Alex Tung 21/1/2017

Problem description

- Given a N-layered triangular grid with numbers
- Want to make it 'K-magical'

- +1: cost = A
- -1: cost = B

• Output minimal cost and final configuration

Meaning of 'K-magical'

• For example, if 2-magical,
sum(B) = sum(R) = sum(G)

SUBTASKS

For all cases: $1 \le K < N \le 80$, $1 \le A, B \le 50$

Points Constraints

$$\begin{array}{ccc}
2 & 15 & N=3 \\
 & K=1
\end{array}$$

$$4 18 K = 1$$

$$5 25 N \le 10$$

6 21 No additional constraints

INPUT

The first line of input consists of four integers N, A, B, and K.

For the next N lines, the i^{th} line consists of i integers, representing the initial numbers on the i^{th} layer, from left to right. The initial numbers are between 1 and 128 (inclusive).

OUTPUT

Output N+1 lines in total.

On the first line, output a single integer, the minimal cost to make the grid K-magical.

On the next N lines, output a final configuration of the grid, using the same format as that for the input. All numbers on the vertices must be between 1 and 512 (inclusive).

Statistics

Attempts	Max	Mean	Std Dev	Subtasks					
21	54	10.714	19.761	11: 6	15: 5	10: 3	18: 3	25: 0	21: 0

Subtasks 1, 2 (N = 3, K = 1)

Key Observation:

Same numbers within a group

Subtasks 3, 4 (K = 1)

 We can divide the vertices into three small groups in similar manner

Solving for each group

- Note that the three small groups are independent
- For each target value V (between 1 and 128),
 calculate the total cost to make all numbers in a group = V

- Time complexity: $O(N^2R)$
 - R: range (= 128)

Subtask 5 (N small)

• K > 1 ... so what?

Basic idea:

- Break grid into 'big groups'
- Solve each big group using algorithm for K = 1

• It's more complicated than that!

'Big groups'

• Example: N = 6, K = 2

• There are roughly K² big groups

Why more complicated?

 Need to make sure triangles in different big groups have the same sum

Algorithm

• Step 1: Break the grid into big groups

• Step 2: For each big group, calculate cost[S], the minimal cost to make triangle sum = S

Step 3: The desired triangle sum, S_{opt}, is the one which minimizes sum(cost[S]). Output the cost and the grid.

• Step 2: For each big group, calculate cost[S], the minimal cost to make triangle sum = S

• How to calculate?

• Say G is a big group with three small groups G1, G2, G3

Calculate c1[V], c2[V], c3[V]

c1[V]: cost to change elements
 of G1 to V

• $cost[S] = min(c1[V_1] + c2[V_2] + c3[V_3] | V_1 + V_2 + V_3 = S)$

Time complexity analysis

- Calculate **c1**[V], **c2**[V], **c3**[V]: O((N/K)² * R)
- Calculate cost[S]: O(R³)
- Time complexity: $O(K^2 * ((N/K)^2 * R + R^3))$
- $O(N^2R + K^2R^3)$, which solves subtasks 1 5

Full solution

- Calculate cost[S]: O(R³) <- Too slow!
- Can be optimized to $O(R^2)$
- Then, time complexity: $O(K^2 * ((N/K)^2 * R + R^2))$
- $O(N^2R + K^2R^2)$, which will get 100 points

The final optimization

Have c1[V], c2[V], c3[V]

• precost[S'] := $min(c1[V_1] + c2[V_2] | V_1 + V_2 = S')$

• cost[S] = min(precost[S'] + c3[V_3] | S' + V_3 = S)

• Each part is $O(R^2)$

The End

• Any questions?