HKOI 2016/17
 SQ4 - Magic Triangle II

Alex Tung
21/1/2017

Problem description

- Given a N-layered triangular grid with numbers
- Want to make it 'K-magical’
$\cdot+1:$ cost = A
- -1 : cost $=\mathrm{B}$
- Output minimal cost and final configuration

Meaning of 'K-magical’

- For example, if 2-magical, $\operatorname{sum}(B)=\operatorname{sum}(R)=\operatorname{sum}(G)$

SUBTASKS

For all cases: $1 \leq K<N \leq 80,1 \leq A, B \leq 50$
Points Constraints
$111 \begin{aligned} & N=3 \\ & K=1\end{aligned}$
$K=1$
$A=B=1$
$215 \quad N=3$
$K=1$
$310 \quad N \leq 6$
$K=1$
$418 \quad K=1$
$5 \quad 25 \quad N \leq 10$
$6 \quad 21 \quad$ No additional constraints

INPUT

The first line of input consists of four integers N, A, B, and K.
For the next N lines, the $i^{\text {th }}$ line consists of i integers, representing the initial numbers on the $i^{\text {th }}$ layer, from left to right. The initial numbers are between 1 and 128 (inclusive).

OUTPUT

Output $N+1$ lines in total.
On the first line, output a single integer, the minimal cost to make the grid K-magical.
On the next N lines, output a final configuration of the grid, using the same format as that for the input. All numbers on the vertices must be between 1 and 512 (inclusive).

Statistics

Attempts	Max	Mean	Std Dev	Subtasks					
21	54	10.714	19.761	$11: 6$	$15: 5$	$10: 3$	$18: 3$	$25: 0$	$21: 0$

Subtasks 1, 2 ($\mathrm{N}=3, \mathrm{~K}=1$)

- Key Observation:

Same numbers within a group

Subtasks 3, 4 (K = 1)

- We can divide the vertices into three small groups in similar manner

Solving for each group

- Note that the three small groups are independent
- For each target value V (between 1 and 128), calculate the total cost to make all numbers in a group $=\mathrm{V}$
- Time complexity: O(N²R)
-R: range (= 128)

Subtask 5 (N small)

-K > 1 ... so what?

Basic idea:

- Break grid into 'big groups'
- Solve each big group using algorithm for $\mathrm{K}=1$
- It's more complicated than that!

'Big groups’

- Example: $\mathrm{N}=6, \mathrm{~K}=2$
- There are roughly K^{2} big groups

Why more complicated?

- Need to make sure triangles in different big groups have the same sum

Algorithm

- Step 1: Break the grid into big groups
- Step 2: For each big group, calculate cost[S], the minimal cost to make triangle sum $=\mathrm{S}$
- Step 3: The desired triangle sum, $\mathrm{S}_{\text {opt }}$, is the one which minimizes sum(cost[S]). Output the cost and the grid.
- Step 2: For each big group, calculate cost[S], the minimal cost to make triangle sum = S
- How to calculate?
- Say G is a big group with three small groups G1, G2, G3
-Calculate c1[V], c2[V], c3[V]
c1[V]: cost to change elements of G1 to V

$\cdot \operatorname{cost}[\mathrm{S}]=\min \left(\mathrm{c} 1\left[\mathrm{~V}_{1}\right]+\mathrm{c} 2\left[\mathrm{~V}_{2}\right]+\mathrm{c} 3\left[\mathrm{~V}_{3}\right] \mid \mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}=\mathrm{S}\right)$

Time complexity analysis

- Calculate c1[V], c2[V], c3[V]: O((N/K) ${ }^{2}$ * R)
- Calculate cost[S]: O(R3)
- Time complexity: $O\left(K^{2} *\left((N / K)^{2} * R+R^{3}\right)\right)$
- $O\left(N^{2} R+K^{2} R^{3}\right)$, which solves subtasks $1-5$

Full solution

- Calculate cost[S]: $O\left(R^{3}\right)<-$ Too slow!
- Can be optimized to $O\left(R^{2}\right)$
- Then, time complexity: $\mathrm{O}\left(\mathrm{K}^{2} *\left((\mathrm{~N} / \mathrm{K})^{2} * \mathrm{R}+\mathrm{R}^{2}\right)\right)$
- $O\left(N^{2} R+K^{2} R^{2}\right)$, which will get 100 points

The final optimization

-Have c1[V], c2[V], c3[V]

- precost[$\left.\mathrm{S}^{\prime}\right]:=\min \left(\mathrm{c} 1\left[\mathrm{~V}_{1}\right]+\mathrm{c} 2\left[\mathrm{~V}_{2}\right] \mid \mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{S}^{\prime}\right)$
$\cdot \operatorname{cost}[\mathrm{S}]=\min \left(\right.$ precost $\left.\left[\mathrm{S}^{\prime}\right]+\mathrm{c} 3\left[\mathrm{~V}_{3}\right] \mid \mathrm{S}^{\prime}+\mathrm{V}_{3}=\mathrm{S}\right)$
- Each part is $O\left(R^{2}\right)$

The End

- Any questions?

