
HKOI 2016/17
SQ4 – Magic Triangle II

Alex Tung

21/1/2017

Problem description

• Given a N-layered triangular grid with numbers

• Want to make it ‘K-magical’

• +1: cost = A

• -1: cost = B

• Output minimal cost and final configuration

Meaning of ‘K-magical’

• For example, if 2-magical,

 sum(B) = sum(R) = sum(G)

Statistics

Subtasks 1, 2 (N = 3, K = 1)

• Key Observation:

 Same numbers within a group

Subtasks 3, 4 (K = 1)

• We can divide the vertices into three small groups
in similar manner

Solving for each group

• Note that the three small groups are independent

• For each target value V (between 1 and 128),
calculate the total cost to make all numbers in a
group = V

• Time complexity: O(N2R)
• R: range (= 128)

Subtask 5 (N small)

• K > 1 ... so what?

Basic idea:

• Break grid into ‘big groups’

• Solve each big group using algorithm for K = 1

• It’s more complicated than that!

‘Big groups’

• Example: N = 6, K = 2

• There are roughly K2 big groups

Why more complicated?

• Need to make sure triangles in different big groups
have the same sum

Algorithm

• Step 1: Break the grid into big groups

• Step 2: For each big group, calculate cost[S], the
minimal cost to make triangle sum = S

• Step 3: The desired triangle sum, Sopt, is the one
which minimizes sum(cost[S]). Output the cost and
the grid.

• Step 2: For each big group, calculate cost[S], the
minimal cost to make triangle sum = S

• How to calculate?

G3

G3 G1 G2

G2

G1

• Say G is a big group with

 three small groups G1, G2, G3

• Calculate c1[V], c2[V], c3[V]

c1[V]: cost to change elements

 of G1 to V

• cost[S] = min(c1[V1] + c2[V2] + c3[V3] | V1 + V2 + V3 = S)

• Calculate c1[V], c2[V], c3[V]: O((N/K)2 * R)

• Calculate cost[S]: O(R3)

• Time complexity: O(K2 * ((N/K)2 * R + R3))

• O(N2R + K2R3), which solves subtasks 1 - 5

Time complexity analysis

Full solution

• Calculate cost[S]: O(R3) <- Too slow!

• Can be optimized to O(R2)

• Then, time complexity: O(K2 * ((N/K)2 * R + R2))

• O(N2R + K2R2), which will get 100 points

The final optimization

• Have c1[V], c2[V], c3[V]

• precost[S’] := min(c1[V1] + c2[V2] | V1 + V2 = S’)

• cost[S] = min(precost[S’] + c3[V3] | S’ + V3 = S)

• Each part is O(R2)

The End

• Any questions?

