HKOI 2016/17
SQ4 - Magic Triangle II

Alex Tung
21/1/2017



Problem description

* Given a N-layered triangular grid with numbers
* Want to make it ‘K-magical’

A
B

e +1: cost

e -1: cost

* Qutput minimal cost and final configuration



Meaning of ‘K-magical’

* For example, if 2-magical,
sum(B) = sum(R) = sum(G)




SUBTASKS

Forallcases: 1< K < N <80,1<A,B<50
Points Constraints
1 11 N=3

15

A
N
K

10 N <6
K=1
K

18 =1
25 N <10
21 No additional constraints

AN O AN QWO N



INPUT

The first line of input consists of four integers N, A, B, and K.

For the next N lines, the i* line consists of i integers, representing the initial numbers on the it
layer, from left to rightJThe initial numbers are between 1 and 128 (inclusive).

OUTPUT

Output N + 1 lines in total.
On the first line, output a single integer, the minimal cost to make the grid K-magical.

On the next N lines, output a final configuration of the grid, using the same format as that for
the input.JAll numbers on the vertices must be between 1 and 512 (inclusive).




Statistics

Attempts

21

Max

54

Mean

10.714

Std Dev

19.761

11:

6

15:5

10: 3

Subtasks

18:3

25:0

21:



Subtasks 1, 2 (N =3, K =1)

* Key Observation:
Same numbers within a group




Subtasks 3, 4 (K = 1)

* We can divide the vertices into three small groups
in similar manner




Solving for each group

* Note that the three small groups are independent

 For each target value V (between 1 and 128),
calculate the total cost to make all numbers 1in a

group =V

* Time complexity: O(N°R)
* R: range (= 128)



Subtask 5 (N small)

eK >1 ... so what?

Basic 1idea:
* Break grid into ‘big groups’
* Solve each big group using algorithm for K =1

e It’s more complicated than that!



‘Big groups’

e Example: N = 6, K = 2
* There are roughly K? big groups




Why more complicated?

* Need to make sure triangles in different big groups
have the same sum



Algorithm

 Step 1: Break the grid into big groups

« Step 2: For each big group, calculate cost[S], the
minimal cost to make triangle sum = S

*Step 3: The desired triangle sum, S, , is the one

which minimizes sum(cost[S]). Output the cost and
the grid.



 Step 2: For each big group, calculate cost[S], the
minimal cost to make triangle sum = S

e How to calculate?



eSay G 1s a big group with
three small groups G1, G2, G3

 Calculate c1[V], c2[V], c3[V]

cl[V]: cost to change elements '
of G1 to V ‘

e cost[S] = min(c1[V,] + c2[V,] + c3[V5] | V, + V, + V; = S)




Time complexity analysis
 Calculate c1[V], c2[V], c3[V]: O((N/K)?% * R)
* Calculate cost[S]: O(R?)

 Time complexity: O(K? * ((N/K)? * R + R3))

* O(N°R + K?R3), which solves subtasks 1 - 5



Full solution

 Calculate cost[S]: O(R3) <- Too slow!
 Can be optimized to O(R?)

* Then, time complexity: O(K? * ((N/K)? * R + R?))

* O(N?R + K?R?), which will get 100 points



The final optimization

e Have c1[V], c2[V], c3[V]

* precost[S’] := min(cl[V,] + c2[V,] | V, + V, = S?)
e cost[S] = min(precost[S’] + c3[V,] | S* + V, = S)

 Each part is O(R?)



The End

* Any questions?



