S173 Monster G0

Author: Anson Ho

Statistic

S173 Monster G0

Statistic

S173 Monster G0

Background

Problem Statement

- N monsters live in N caves
- Different monsters live in different caves

Problem Statement

- Given a list of M radars
- Each radar have a given set of caves in range
- Each radar can show the monsters in the caves in range in an arbitrary order

Problem Statement

Cave	1	2	3	4
Monster	C	A	B	D

\section*{| | Radar | Cave | Cave |
| :---: | :---: | :---: | :---: |
| Rave | | | |
| 2 | 3 | 4 | |}

- $\{A, B, D\}$
- $\{A, B\}$
- $\{D, A, B\}$
- $\{C, A, B, D\}$
- $\{B, A, D\}$
- $\{B, C, D\}$

Problem Statement

- Output the minimum number K such that the first K radars can determine the location of each monster
- \Leftrightarrow there is exactly one permutation of monster locations corresponding to the information of the K radars

Example

- $N=2, M=2$
- Range of radar 1 = \{cave 1, cave 2$\}$
- Range of radar 2 = \{cave 2$\}$
- Ans: K = 2
- Radar 1 actually gives no useful information
- The monster in cave 1 can be determined by method of elimination once the monster in cave 2 is known

Subtask 1

- $N, M<=2$
- When $\mathrm{N}=1$
- No need radar
- Output 0
- Monster 1 always lives in cave 1

Subtask 1

- $N, M<=2$
- When $N=2$
- Possible ranges of radars
- $\{1\},\{2\},\{1,2\}=\{2,1\}$
- $3+3^{2}$ (or $4+4^{2}$) possibilities
- Hardcode

Subtask 2

- $N<=2, ~ N M<=2 e 5$
- When $N=2$
- Possible ranges of radars
- $\{1\},\{2\},\{1,2\}=\{2,1\}$
- Done $\Leftrightarrow\{1\}$ or $\{2\}$ appear

Observation

- Cave i and Cave j are distinguishable
\Leftrightarrow you can partition N monsters into two groups such that the monsters in cave i and cave j are in different groups
\Leftrightarrow the sets of radars in range are different

Observation

- Denote the sets of radars in range by R_{i} and R_{j} for cave i and cave j respectively
- If $\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{\mathrm{j}}$

Then the monsters in cave i and cave j will be both present or both absent in the result of each radar
\rightarrow Not distinguishable

Observation

- If $R_{i} \neq R_{j}$

Then there is one radar such that cave i is in range and cave j is not in range, or in the other way \rightarrow Monsters can be partitioned by the result of that radar \rightarrow Distinguishable

- Thus, different set \Leftrightarrow distinguishable

Observation

- The radars are enough
\Leftrightarrow the caves are pairwise distinguishable
\Leftrightarrow the sets of radars in range are pairwise different

Subtask 3

- $\mathrm{N}<=10, \mathrm{NM}<=2 \mathrm{e} 5$
- After a radar is added
- Set the pair of caves to be distinguishable if one is present and one is absent
- Check if every pair of caves is distinguishable
- $O\left(N^{2} M\right)$

Subtask 4

- $N, M<=2 e 5, N M<=2 e 5$
- "Not distinguishable" is an equivalence relation
- So the monsters can be partitioned into equivalence classes

Subtask 4

- $N, M<=2 e 5, N M<=2 e 5$
- "Not distinguishable" is an equivalence relation
- So the monsters can be partitioned into equivalence classes

Subtask 4

- $N, M<=2 e 5, N M<=2 e 5$
- If A, B are not distinguishable and B, C are not distinguishable
- Then A, C are not distinguishable
- Monsters can be partitioned into groups such that the members are pairwise not distinguishable

Subtask 4

- $N, M<=2 e 5, N M<=2 e 5$
- Reduce unnecessary checking
- Recall

Same set \Leftrightarrow not distinguishable

- How to efficiently check the equality of set?

Subtask 4

- For each cave, define a binary number where the $i^{\text {th }}$ digit represents whether the cave is in the range of radar i

Subtask 4

- Radar $1=\{1\}$
- Radar $2=\{1,2\}$
- Radar $3=\{2\}$
- Cave $1=110_{2}$
- Cave $2=011_{2}$
- Cave $3=000_{2}$

Subtask 4

- If the N numbers are distinct
- (can be checked by hashing)
- Then it is done
- O(NMlogN)

Subtask 4

- If the N numbers are distinct
- (can be checked by hashing)
- Then it is done
- O(NMlogN)
- Not intended

Subtask 5

- $N, M<=2 e 5$, input size $=0(2 e 5)$
- Not to check every N numbers after a radar is added

Subtask 5

- $N, M<=2 e 5$, input size $=0(2 e 5)$
- Not to check every N numbers after a radar is added
- Else TLE

Subtask 5

- Method 1
- If the first x radars are enough
- Then the first y (y > x) radars are also enough
- Binary search
- O(NlogNlogM)

Subtask 5

- Method 1
- If the first x radars are enough
- Then the first y (y > x) radars are also enough
- Binary search
- O(NlogNlogM)
- Not intended

Subtask 5

- Method 2
- Notice that a group is split when the members are not all in range OR all not in range for the newly added radar

Subtask 5

- Method 2
- Implementation
- Define a group id for each group
- Split group \rightarrow change id
- Only change id of those included in input

Subtask 5

- Method 2

Cave	1	2	3	\ldots	N
Group id	1	1	1	2	K

- Radar $=\{1,2\}$

Cave	1	2	3	\ldots	N
Group id	$K+1$	$K+1$	1	2	K

Subtask 5

- Method 2

Cave	1	2	3	\ldots	N
Group id	1	1	1	2	K

- $\operatorname{Radar}=\{1,2,3\}$

Cave	1	2	3	\ldots	N
Group id	1	1	1	2	K

Subtask 5

- Method 2

Cave	1	2	3	\ldots	N
Group id	1	1	1	2	K

- $\operatorname{Radar}=\{1,2,3\}$
$\begin{array}{lllllll}\text { Cave } & 1 & 2 & 3 & \text {... }\end{array}$
Group id $K+1 K+1 K+1 \quad 2 \quad K$

Subtask 5

- Method 2

Cave	1	2	3	\ldots	N
Group id	1	1	1	2	K

- $\operatorname{Radar}=\{6,8,9\}$

Cave	1	2	3	\ldots	N
Group id	1	1	1	2	

Subtask 5

- Method 2

Cave	1	2	3	4	\ldots	N
Group id	1	1	2	2	3	K

- Radar $=\{2,3\}$

Cave	1	2	3	4	\ldots	N
Group id	1	$K+1$	$K+2$	2	3	K

Subtask 5

- Method 2
- O(input size)
- Expected score $=100 \quad: D$

Thank you

