S173 Monster GO

Author: Anson Ho

Statistic

S173 Monster GO

Statistic

S173 Monster GO

Background

https://cdn.igeeksblog.com/wp-content/uploads/2016/08/Fi
nd-Nearby-Pokemon-with-Sightings-Screen-in-Pokemon-Go.jpg

https://www.tqgames.com/

- N monsters live in N caves
- Different monsters live in different caves

Cave	1	2	3	4
Monster	С	А	В	D

- Given a list of M radars
- Each radar have a given set of caves in range
- Each radar can show the monsters in the caves in range in an arbitrary order

Cave	1	2	3	4
Monster	C	А	В	D

- {A, B, D}
- {D, A, B}
- {B, A, D}

{A, B}
{C, A, B, D}
{B, C, D}

- Output the minimum number K such that the first K radars can determine the location of each monster
- ↔ there is exactly one permutation of monster locations corresponding to the information of the K radars

Example

- N = 2, M = 2
- Range of radar 1 = {cave 1, cave 2}
- Range of radar $2 = \{cave 2\}$
- Ans: K = 2
- Radar 1 actually gives no useful information
- The monster in cave 1 can be determined by method of elimination once the monster in cave 2 is known

• N, M <= 2

- When N = 1
- No need radar
- Output 0
- Monster 1 always lives in cave 1

• N, M <= 2

- When N = 2
- Possible ranges of radars
- {1}, {2}, {1, 2} = {2, 1}
- $3 + 3^2$ (or $4 + 4^2$) possibilities
- Hardcode

• N <= 2, NM <= 2e5

- When N = 2
- Possible ranges of radars
- {1}, {2}, {1, 2} = {2, 1}
- Done \Leftrightarrow {1} or {2} appear

- Cave i and Cave j are distinguishable
 - you can partition N monsters
 into two groups such that the
 monsters in cave i and cave j
 are in different groups
 - the sets of radars in range are different

- Denote the sets of radars in range by $R_{\rm i}$ and $R_{\rm j}$ for cave i and cave j respectively
- If R_i = R_j Then the monsters in cave i and cave j will be both present or both absent in the result of each radar
 - → Not distinguishable

 If R_i ≠ R_j Then there is one radar such that cave i is in range and cave j is not in range, or in the other way
 → Monsters can be partitioned by the result of that radar
 → Distinguishable

Thus,
 different set ⇔ distinguishable

 The radars are enough
 ⇔ the caves are pairwise <u>distinguishable</u>
 ⇔ the sets of radars in range are pairwise different

- N <= 10, NM <= 2e5
- After a radar is added
- Set the pair of caves to be distinguishable if one is present and one is absent
- Check if every pair of caves is distinguishable
- O(N²M)

• N, M <= 2e5, NM <= 2e5

• "Not distinguishable" is an equivalence relation

 So the monsters can be partitioned into equivalence classes

• N, M <= 2e5, NM <= 2e5

• "Not distinguishable" is an equivalence relation

 So the monsters can be partitioned into equivalence classes

• N, M <= 2e5, NM <= 2e5

- If A, B are not distinguishable and B, C are not distinguishable
- Then A, C are not distinguishable

• Monsters can be partitioned into groups such that the members are pairwise not distinguishable

• N, M <= 2e5, NM <= 2e5

- Reduce unnecessary checking
- Recall
 Same set ⇔ not distinguishable
- How to efficiently check the equality of set?

 For each cave, define a binary number where the ith digit represents whether the cave is in the range of radar i

- Radar $1 = \{1\}$
- Radar $2 = \{1, 2\}$
- Radar $3 = \{2\}$

- Cave $1 = 110_2$
- Cave $2 = 011_2$
- Cave $3 = 000_2$

- If the N numbers are distinct
- (can be checked by hashing)
- Then it is done

• O(NMlogN)

- If the N numbers are distinct
- (can be checked by hashing)
- Then it is done

- O(NMlogN)
- Not intended

• N, M <= 2e5, input size = O(2e5)

 Not to check every N numbers after a radar is added

• N, M <= 2e5, input size = O(2e5)

- Not to check every N numbers after a radar is added
- Else TLE

- Method 1
- If the first x radars are enough
- Then the first y (y > x) radars are also enough
- Binary search
- O(NlogNlogM)

- Method 1
- If the first x radars are enough
- Then the first y (y > x) radars are also enough
- Binary search
- O(NlogNlogM)
- Not intended

• Method 2

 Notice that a group is split when the members are not
 all in range OR all not in range for the newly added radar

• Method 2

• Implementation

- Define a group id for each group
- Split group \rightarrow change id
- Only change id of those included in input

• Method 2

Cave	1	2	3	•••	Ν
Group id	1	1	1	2	К

• Radar = $\{1, 2\}$

Cave	1	2	3	•••	Ν
Group id	K + 1	K + 1	1	2	К

• Method 2

Cave	1	2	3	•••	Ν
Group id	1	1	1	2	К

• Radar = $\{1, 2, 3\}$

Cave	1	2	3	•••	Ν
Group id	1	1	1	2	К

• Method 2

Cave	1	2	3	•••	Ν
Group id	1	1	1	2	К

• Radar = $\{1, 2, 3\}$

Cave	1	2	3	•••	Ν
Group id	K + 1	K + 1	K + 1	2	К

• Method 2

Cave	1	2	3	•••	Ν
Group id	1	1	1	2	К

• Radar = $\{6, 8, 9\}$

Cave	1	2	3	•••	Ν
Group id	1	1	1	2	

• Method 2

Cave	1	2	3	4	•••	Ν
Group id	1	1	2	2	3	К

• Radar = $\{2, 3\}$

Cave	1	2	3	4	•••	Ν
Group id	1	K + 1	K + 2	2	3	К

• Method 2

• O(input size)

• Expected score = 100 :D

Thank you